
Kube-OVN Document

v1.14.4

Kube-OVN Team

2025 Kube-OVN Team

Table of contents

51. Kube-OVN

51.1 What is Kube-OVN?

51.2 Why Kube-OVN?

61.3 CNI Selection Recommendations

71.4 Concepts Clarification: OVN/ovn-kubernetes/Kube-OVN

81.5 Comments

92. Getting Started

92.1 Prerequisites

112.2 One-Click Installation

142.3 Underlay Installation

202.4 Install on Talos

212.5 Uninstall

223. User Guide

223.1 Installation and Configuration Options

273.2 Config Subnet

343.3 DualStack

363.4 Fixed Addresses

393.5 Reserved IP for Specific Resources

423.6 Configure IPPool

433.7 Custom Routes

443.8 EIP and SNAT

473.9 Manage QoS

493.10 Webhook

513.11 Traffic Mirror

573.12 NetworkPolicy Logging

593.13 LoadBalancer Type Service

643.14 Monitor and Dashboard

683.15 Config Native Prometheus

744. KubeVirt

744.1 Fixed VM IP

774.2 Dual-Stack Network

794.3 Live Migration

854.4 DHCP

865. VPC Network

865.1 Config VPC

Table of contents

- 2/324 - 2025 Kube-OVN Team

955.2 VPC Egress Gateway

1085.3 VPC QoS

1115.4 Customize VPC Internal Load Balancing

1155.5 Custom VPC Internal DNS

1185.6 SecurityGroup Usage

1215.7 Support OVN EIP,FIP and SNAT

1315.8 Support OVN SNAT L3 HA Based ECMP and BFD Static Route

1355.9 VPC Peering

1376. Operations

1376.1 Kubectl Plugin

1486.2 Delete Work Node

1506.3 Replace ovn-central Node

1546.4 OVN DB Backup and Recovery

1576.5 Change Subnet CIDR

1586.6 Change Join Subnet CIDR

1606.7 Change Log Level

1616.8 FAQ

1637. Advanced Features

1637.1 Manage Multiple Interface

1707.2 Performance Tuning

1757.3 Compile FastPath Module

1777.4 Accelerate TCP Communication in Node with eBPF

1817.5 Cluster Inter-Connection with OVN-IC

1887.6 Cluster Inter-Connection with Submariner

1907.7 Interconnection with Routes in Overlay Mode

1927.8 BGP Support

1977.9 Integrating MetalLB with Kube-OVN Underlay

2027.10 Integration with Cilium

2057.11 Cilium NetworkPolicy Support

2097.12 Cilium Network Traffic Observation

2147.13 External Gateway

2157.14 VIP reserved IP

2197.15 Offload with Mellanox

2287.16 Offload with Corigine

2327.17 Hardware Offload for Yunsilicon

2367.18 Offload with YUSUR

2397.19 DPDK Support

2437.20 Integration with OpenStack

Table of contents

- 3/324 - 2025 Kube-OVN Team

2477.21 Use IPsec to encrypt communication between nodes

2487.22 OVN Remote Port Mirroring

2517.23 NodeLocal DNSCache and Kube-OVN adaptation

2547.24 Default VPC NAT Policy Rule

2558. Reference

2558.1 Architecture

2588.2 Kube-OVN RoadMap

2598.3 Release Management

2618.4 Feature Stage

2658.5 Underlay Traffic Topology

2728.6 Iptables Rules

2788.7 Kube-OVN-Pinger args Reference

2828.8 Development and Contribution Guide

2848.9 OVS/OVN Customization

2858.10 Tunnel Protocol Selection

2878.11 Metrics

2978.12 Kube-OVN API Reference

3168.13 Annotation Usage

3218.14 Document Specification

3249. Contact US

3249.1 Comments

Table of contents

- 4/324 - 2025 Kube-OVN Team

1. Kube-OVN

1.1 What is Kube-OVN?

Kube-OVN is an enterprise-level cloud-native network orchestration system under CNCF that combines the capabilities of SDN

with cloud-native technologies, providing the most functions, extreme performance and the easiest operation.

Kube-OVN uses Open Virtual Network (OVN) and Open vSwitch at the underlying layer to implement network orchestration and

exposes its rich capabilities to Kubernetes networking. OVN and OVS have a long history, having emerged long before

Kubernetes was born, and have become the de facto standard in the SDN field. Kube-OVN brings them into Kubernetes,

significantly enhancing Kubernetes' networking capabilities.

1.2 Why Kube-OVN?

As the workloads running on Kubernetes become more diverse and the scenarios increase, the demand for networking also

grows. As long-established networking components, OVN and OVS provide all the functionalities you need.

If you need to run KubeVirt on Kubernetes or have multi-tenant networking requirements, you will find that Kube-OVN's

capabilities perfectly match your scenarios. Kube-OVN combines SDN capabilities with cloud-native technologies, offering the

most functions, extreme performance and the easiest operation.

Most Functions:

If you miss the rich networking capabilities of the SDN age but are struggling to find them in the cloud-native age, Kube-OVN

should be your best choice.

Leveraging the proven capabilities of OVS/OVN in the SDN, Kube-OVN brings the rich capabilities of network virtualization to

the cloud-native space. It currently supports Subnet Management, Static IP Allocation, Distributed/Centralized Gateways,

Underlay/Overlay Hybrid Networks, VPC Multi-Tenant Networks, Cross-Cluster Interconnect, QoS Management, Multi-NIC

Management, ACL, Traffic Mirroring, ARM Support, and many more.

Extreme Performance:

If you're concerned about the additional performance loss associated with container networks, then take a look at How Kube-

OVN is doing everything it can to optimize performance.

1. Kube-OVN

- 5/324 - 2025 Kube-OVN Team

In the data plane, through a series of carefully optimized flow and kernel optimizations, and with emerging technologies such as

eBPF, DPDK and SmartNIC Offload, Kube-OVN can approximate or exceed host network performance in terms of latency and

throughput.

In the control plane, Kube-OVN can support large-scale clusters of thousands of nodes and tens of thousands of Pods through the

tailoring of OVN upstream flow tables and the use and tuning of various caching techniques.

In addition, Kube-OVN is continuously optimizing the usage of resources such as CPU and memory to accommodate resource-

limited scenarios such as the edge.

Easiest Operation:

If you're worried about container network operations, Kube-OVN has a number of built-in tools to help you simplify your

operations.

Kube-OVN provides one-click installation scripts to help users quickly build production-ready container networks. Also built-in

rich monitoring metrics and Grafana dashboard help users to quickly set up monitoring system.

Powerful command line tools simplify daily operations and maintenance for users. By combining with Cilium, users can enhance

the observability of their networks with eBPF capabilities. In addition, the ability to mirror traffic makes it easy to customize

traffic monitoring and interface with traditional NPM systems.

1.3 CNI Selection Recommendations

The Kubernetes community offers many excellent CNI projects, which can make selection difficult for users. We recommend first

identifying your actual requirements, then evaluating how different projects address those needs - rather than comparing all

products first and then deciding which one fits. This approach makes sense for two reasons:

Project maintainers primarily focus on their own projects and solving their community's problems - not tracking what other

projects are doing or understanding their implementation details. Therefore, maintainers can't provide accurate comparison

charts, and it's even harder for outsiders to do this.

For end users, understanding your internal needs is far more important than understanding the differences between external

projects.

Creating a comparison chart under the Kube-OVN project that recommends Kube-OVN would inevitably be subjective and

potentially inaccurate. Instead, we'll list scenarios where you SHOULD NOT choose Kube-OVN and provide our

recommendations.

1.3.1 When You Need an eBPF Solution

Choose Cilium or Calico eBPF.

Kube-OVN uses Open vSwitch as its data plane, which is a relatively older network virtualization technology.

1.3.2 When You Need an All-in-One Solution (CNI, Ingress, Service Mesh, and Observability)

Choose Cilium.

Kube-OVN primarily focuses on CNI-level networking capabilities, requiring you to combine it with other ecosystem projects for

these additional features.

1.3.3 When Running on OpenShift

Choose ovn-kubernetes.

Using third-party CNIs on OpenShift requires adapting to the Cluster Network Operator specifications, which Kube-OVN

currently doesn't plan to support. Additionally, third-party network plugins won't receive official Red Hat support, and since

networking is critical in Kubernetes, you'd need to coordinate between multiple vendors for solution design and troubleshooting.

1.

2.

1.3 CNI Selection Recommendations

- 6/324 - 2025 Kube-OVN Team

https://cilium.io/
https://cilium.io/
https://ovn-kubernetes.io/
https://github.com/openshift/cluster-network-operator

1.3.4 When Using Public Cloud Kubernetes (EKS/AKS/GKE, etc.)

Choose the default CNI provided by your Kubernetes vendor, for the same reasons as above.

1.3.5 When Running AI Training and Inference Workloads

Use Hostnetwork or host-device to assign physical devices directly to containers.

AI workloads demand extremely low network latency, making any additional container network operations unnecessary.

1.4 Concepts Clarification: OVN/ovn-kubernetes/Kube-OVN

Due to the similarity of these terms and some abbreviations, confusion often arises in communication. Here's a brief clarification:

1.4.1 OVN

OVN is a virtual network controller maintained by the Open vSwitch community, providing foundational abstractions for virtual

networking. It is platform-agnostic and can offer networking services to multiple CMS (Cloud Management Systems) such as

OpenStack and Kubernetes. Both ovn-kubernetes and Kube-OVN rely on OVN's networking capabilities to provide network

functionality for Kubernetes.

1.4.2 ovn-kubernetes

ovn-kubernetes was initially a project launched by OVN maintainers to provide CNI networking capabilities for Kubernetes using

OVN. It is now the default network for OpenShift and is widely used in OpenShift environments. It offers advanced features such

as:

UDN (User-Defined Networks)

Multihoming

Hardware Acceleration

1.4.3 Kube-OVN

Kube-OVN was originally developed to address issues like static IP allocation, namespace-based address space assignment, and

centralized gateways by building on OVN. In its early stages, it heavily borrowed design principles and architecture from ovn-

kubernetes, such as:

Using annotations to pass Pod network information.

Leveraging join networks to bridge container and host networks.

With community contributions, it has evolved to support advanced features like Underlay networking, VPC, and KubeVirt

integration.

 PDF Slack Support

July 30, 2025

May 20, 2022

GitHub

•

•

•

•

•

1.3.4 When Using Public Cloud Kubernetes (EKS/AKS/GKE, etc.)

- 7/324 - 2025 Kube-OVN Team

https://www.cni.dev/plugins/current/main/host-device/
https://www.ovn.org/en/
https://ovn-kubernetes.io/
https://ovn-kubernetes.io/okeps/okep-5193-user-defined-networks/
https://ovn-kubernetes.io/features/multiple-networks/multi-homing/
https://ovn-kubernetes.io/features/hardware-offload/ovs-doca/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

1.5 Comments

1.5 Comments

- 8/324 - 2025 Kube-OVN Team

2. Getting Started

2.1 Prerequisites

Kube-OVN is a CNI-compliant network system that depends on the Kubernetes environment and the corresponding kernel

network module for its operation. Below are the operating system and software versions tested, the environment configuration

and the ports that need to be opened.

2.1.1 Software Version

Kubernetes >= 1.29.

Docker >= 1.12.6, Containerd >= 1.3.4.

OS: CentOS 7/8, Ubuntu 16.04/18.04/20.04.

For other Linux distributions, please make sure geneve , openvswitch , ip_tables and iptable_nat kernel modules exist.

Attention:

For CentOS kernel version 3.10.0-862 bug exists in netfilter modules that lead Kube-OVN embed nat and lb failure.Please update

kernel and check Floating IPs broken after kernel upgrade to Centos/RHEL 7.5 - DNAT not working.

Kernel version 4.18.0-372.9.1.el8.x86_64 in Rocky Linux 8.6 has a TCP connection problem TCP connection failed in Rocky Linux

8.6,please update kernel to 4.18.0-372.13.1.el8_6.x86_64 or later.

For kernel version 4.4, the related openvswitch module has some issues for ct, please update kernel version or manually compile

openvswitch kernel module.

When building Geneve tunnel IPv6 in kernel should be enabled, check the kernel bootstrap options with cat /proc/cmdline .Check

Geneve tunnels don't work when ipv6 is disabled for the detail bug info.

2.1.2 Environment Setup

Kernel should enable IPv6, if kernel bootstrap options contain ipv6.disable=1 , it should be set to 0 .

kube-proxy works, Kube-OVN can visit kube-apiserver from Service ClusterIP.

Make sure kubelet enabled CNI and find cni-bin and cni-conf in default directories, kubelet bootstrap options should contain

--network-plugin=cni --cni-bin-dir=/opt/cni/bin --cni-conf-dir=/etc/cni/net.d .

Make sure no other CNI installed or has been removed, check if any config files still exist in /etc/cni/net.d/ .

•

•

•

•

1.

2.

3.

4.

•

•

•

•

2. Getting Started

- 9/324 - 2025 Kube-OVN Team

https://bugs.launchpad.net/neutron/+bug/1776778
https://github.com/kubeovn/kube-ovn/issues/1647
https://github.com/kubeovn/kube-ovn/issues/1647
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1794232

2.1.3 Ports Need Open

If you are running firewalld on nodes, you need also to enable packet forwarding and masquerade:

 PDF Slack Support

July 30, 2025

June 30, 2022

GitHub

2.1.4 Comments

Component Port Usage

ovn-central 6641/tcp ovn nb db server listen ports

ovn-central 6642/tcp ovn sb db server listen ports

ovn-central 6643/tcp ovn northd server listen ports

ovn-central 6644/tcp ovn raft server listen ports

ovn-ic 6645/tcp ovn ic nb db server listen ports

ovn-ic 6646/tcp ovn ic sb db server listen ports

ovs-ovn Geneve 6081/udp, STT 7471/tcp, Vxlan 4789/udp tunnel ports

kube-ovn-controller 10660/tcp metrics port

kube-ovn-daemon 10665/tcp metrics port

kube-ovn-monitor 10661/tcp metrics port

enable packet forwarding
firewall-cmd --add-forward --permanent
enable IPv4 masquerade
firewall-cmd --add-masquerade --permanent
enable IPv6 masquerade for the Kube-OVN IPv6/DualStack subnet (adjust if your subnet differs)
firewall-cmd --permanent --add-rich-rule 'rule family="ipv6" source address="fd00:10:16::/112" masquerade'

firewall-cmd --reload

2.1.3 Ports Need Open

- 10/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/oilbeater
https://github.com/oilbeater

2.2 One-Click Installation

Kube-OVN provides a one-click installation script and charts repo to help you quickly install a highly available, production-ready

Kube-OVN container network with Overlay networking by default.

If you need Underlay/Vlan networking as the default container network, please read Underlay Installation

Before installation please read Prerequisites first to make sure the environment is ready. If you want to completely remove Kube-

OVN, please refer to Uninstallation.

2.2.1 Script Installation

Download the installation script

We recommend using the stable release version for production environments, please use the following command to download:

If you are interested in the latest features of the master branch, please use the following command to download:

Modify Configuration Options

Open the script using the editor and change the following variables to the expected:

You can also use regular expression to match NIC names, such as IFACE=enp6s0f0,eth.* .

Run the Script

The script needs to be executed with root permission

bash install.sh

Wait Kube-OVN ready.

Upgrade

When using this script to upgrade Kube-OVN, please pay attention to the following points:

The script's [Step 4/6] restarts all container network Pods. During an upgrade, this step should be skipped or commented out

from the script to avoid unintended restarts.

Important: If any parameters were adjusted during Kube-OVN operation, these changes must be updated in the script before

upgrading. Otherwise, previous parameter adjustments will be reverted.

2.2.2 Helm Chart Installation

Since the installation of Kube-OVN requires setting some parameters, to install Kube-OVN using Helm, you need to follow the

steps below.

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/refs/tags/v1.14.4/dist/images/install.sh

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/images/install.sh

REGISTRY="kubeovn" # Image Repo
VERSION="v1.14.4" # Image Tag
POD_CIDR="10.16.0.0/16" # Default subnet CIDR don't overlay with SVC/NODE/JOIN CIDR
SVC_CIDR="10.96.0.0/12" # Be consistent with apiserver's service-cluster-ip-range
JOIN_CIDR="100.64.0.0/16" # Pod/Host communication Subnet CIDR, don't overlay with SVC/NODE/POD CIDR
LABEL="node-role.kubernetes.io/master" # The node label to deploy OVN DB
IFACE="" # The name of the host NIC used by the container network, or if empty use the NIC that host Node IP in Kubernetes
TUNNEL_TYPE="geneve" # Tunnel protocol, available options: geneve, vxlan or stt. stt requires compilation of ovs kernel module

1.

2.

2.2 One-Click Installation

- 11/324 - 2025 Kube-OVN Team

View the node IP address

Add label to node

Add Helm Repo information

Install Kube-OVN with Helm

You can refer to the variable definitions in the values.yaml file for available parameters.

Upgrade

Important: Similar to script-based upgrades, ensure all parameter adjustments are updated in the values.yaml file before

upgrading with Helm. Otherwise, previous parameter adjustments will be reverted.

 PDF Slack Support

July 30, 2025

May 20, 2022

GitHub

kubectl get node -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
kube-ovn-control-plane NotReady control-plane 20h v1.26.0 172.18.0.3 <none> Ubuntu 22.04.1 LTS 5.10.104-linuxkit containerd://1.6.9
kube-ovn-worker NotReady <none> 20h v1.26.0 172.18.0.2 <none> Ubuntu 22.04.1 LTS 5.10.104-linuxkit containerd://1.6.9

kubectl label node -lbeta.kubernetes.io/os=linux kubernetes.io/os=linux --overwrite
node/kube-ovn-control-plane not labeled
node/kube-ovn-worker not labeled

kubectl label node -lnode-role.kubernetes.io/control-plane kube-ovn/role=master --overwrite
node/kube-ovn-control-plane labeled

The following labels are used for the installation of dpdk images and can be ignored in non-dpdk cases
kubectl label node -lovn.kubernetes.io/ovs_dp_type!=userspace ovn.kubernetes.io/ovs_dp_type=kernel --overwrite
node/kube-ovn-control-plane labeled
node/kube-ovn-worker labeled

helm repo add kubeovn https://kubeovn.github.io/kube-ovn/
"kubeovn" has been added to your repositories

$ helm repo list
NAME URL
kubeovn https://kubeovn.github.io/kube-ovn/

helm repo update kubeovn
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "kubeovn" chart repository

Update Complete. ⎈Happy Helming!⎈

helm search repo kubeovn
NAME CHART VERSION APP VERSION DESCRIPTION
kubeovn/kube-ovn v1.14.4 v1.14.4 Helm chart for Kube-OVN

helm install kube-ovn kubeovn/kube-ovn --wait -n kube-system --version v1.14.4
NAME: kube-ovn
LAST DEPLOYED: Thu Apr 24 08:30:13 2025
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None

helm upgrade -f values.yaml kube-ovn kubeovn/kube-ovn --wait -n kube-system --version v1.14.4

2.2.2 Helm Chart Installation

- 12/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/hongzhen-ma
https://github.com/hongzhen-ma
https://github.com/oilbeater
https://github.com/oilbeater

2.2.3 Comments

2.2.3 Comments

- 13/324 - 2025 Kube-OVN Team

2.3 Underlay Installation

By default, the default subnet uses Geneve to encapsulate cross-host traffic, and build an overlay network on top of the

infrastructure.

For the case that you want the container network to use the physical network address directly, you can set the default subnet of

Kube-OVN to work in Underlay mode, which can directly assign the address resources in the physical network to the containers,

achieving better performance and connectivity with the physical network.

2.3.1 Limitation

Since the container network in this mode uses physical network directly for L2 packet forwarding, L3 functions such as SNAT/

EIP, distributed gateway/centralized gateway in Overlay mode cannot be used. VPC level isolation is also not available for

underlay subnet.

2.3.2 Comparison with Macvlan

The Underlay mode of Kube-OVN is very similar to the Macvlan, with the following major differences in functionality and

performance:

Macvlan performs better in terms of throughput and latency performance metrics due to its shorter kernel path and the fact that it

does not require OVS for packet processing.

Kube-OVN provides arp-proxy functionality through flow tables to mitigate the risk of arp broadcast storms on large-scale

networks.

Since Macvlan works at the bottom of the kernel and bypasses the host netfilter, Service and NetworkPolicy functionality requires

additional development. Kube-OVN provides Service and NetworkPolicy capabilities through the OVS flow table.

Kube-OVN Underlay mode provides additional features such as address management, fixed IP and QoS compared to Macvlan.

1.

2.

3.

4.

2.3 Underlay Installation

- 14/324 - 2025 Kube-OVN Team

2.3.3 Environment Requirements

In Underlay mode, the OVS will bridge a node NIC to the OVS bridge and send packets directly through that node NIC, relying

on the underlying network devices for L2/L3 level forwarding capabilities. You need to configure the corresponding gateway,

Vlan and security policy in the underlying network device in advance.

For OpenStack VM environments, you need to turn off PortSecurity on the corresponding network port.

For VMware vSwitch networks, MAC Address Changes , Forged Transmits and Promiscuous Mode Operation should be set to allow .

For Hyper-V virtualization, MAC Address Spoofing should be enabled in VM nic advanced features.

Public clouds, such as AWS, GCE, AliCloud, etc., do not support user-defined Mac, so they cannot support Underlay mode network.

In this scenario, if you want to use Underlay, it is recommended to use the VPC-CNI provided by the corresponding public cloud

vendor..

The network interface that is bridged into ovs can not be type of Linux Bridge.

For management and container networks using the same NIC, Kube-OVN will transfer the NIC's Mac address, IP address, route,

and MTU to the corresponding OVS Bridge to support single NIC deployment of Underlay networks. OVS Bridge name format is

br-PROVIDER_NAME , PROVIDER_NAME is the name of ProviderNetwork (Default: provider).

2.3.4 Specify Network Mode When Deploying

This deployment mode sets the default subnet to Underlay mode, and all Pods with no subnet specified will run in the Underlay

network by default.

Download Script

MODIFY CONFIGURATION OPTIONS

Run the Script

2.3.5 Dynamically Create Underlay Networks via CRD

This approach dynamically creates an Underlay subnet that Pod can use after installation.

Create ProviderNetwork

ProviderNetwork provides the abstraction of host NIC to physical network mapping, unifies the management of NICs belonging

to the same network, and solves the configuration problems in complex environments with multiple NICs on the same machine,

inconsistent NIC names and inconsistent corresponding Underlay networks.

Create ProviderNetwork as below:

1.

2.

3.

4.

5.

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install.sh

ENABLE_ARP_DETECT_IP_CONFLICT # disable vlan arp conflict detection if necessary
NETWORK_TYPE # set to vlan
VLAN_INTERFACE_NAME # set to the NIC that carries the Underlay traffic, e.g. eth1
VLAN_ID # The VLAN Tag need to be added, if set 0 no vlan tag will be added
POD_CIDR # The Underlay network CIDR, e.g. 192.168.1.0/24
POD_GATEWAY # Underlay physic gateway address, e.g. 192.168.1.1
EXCLUDE_IPS # Exclude ranges to avoid conflicts between container network and IPs already in use on the physical network, e.g.
192.168.1.1..192.168.1.100
ENABLE_LB # If Underlay Subnet needs to visit Service set it to true
EXCHANGE_LINK_NAME # If swap the names of the OVS bridge and the bridge interface under the default provider-network. Default to false.
LS_DNAT_MOD_DL_DST # If DNAT translate MAC addresses to accelerate service access. Default to true.

bash install.sh

apiVersion: kubeovn.io/v1
kind: ProviderNetwork
metadata:
 name: net1
spec:
 defaultInterface: eth1

2.3.3 Environment Requirements

- 15/324 - 2025 Kube-OVN Team

Note: The length of the ProviderNetwork resource name must not exceed 12.

defaultInterface : The default node NIC name. When the ProviderNetwork is successfully created, an OVS bridge named br-

net1 (in the format br-NAME) is created in each node (except excludeNodes) and the specified node NIC is bridged to this

bridge.

customInterfaces : Optionally, you can specify the NIC to be used for a specific node.

excludeNodes : Optional, to specify nodes that do not bridge the NIC. Nodes in this list will be added with the net1.provider-

network.ovn.kubernetes.io/exclude=true tag.

Other nodes will be added with the following tags:

If an IP has been configured on the node NIC, the IP address and the route on the NIC are transferred to the corresponding OVS

bridge.

Create VLAN

Vlan provides an abstraction to bind Vlan Tag and ProviderNetwork.

Create a VLAN as below:

id : VLAN ID/Tag, Kube-OVN will add this Vlan tag to traffic, if set 0, no tag is added. the vlan tag applies to a localnet port.

provider : The name of ProviderNetwork. Multiple VLAN can use a same ProviderNetwork.

Create Subnet

Bind Vlan to a Subnet as below:

vlan : The VLAN name to be used. Multiple subnets can reference the same VLAN.

disableGatewayCheck : If the gateway in the underlying network does not exist, set this field to true to disable gateway

detection.

 customInterfaces:
 - interface: eth2
 nodes:
 - node1
 excludeNodes:
 - node2

•

•

•

Key Value Description

net1.provider-network.ovn.kubernetes.io/

ready

true bridge work finished, ProviderNetwork is ready on

this node

net1.provider-network.ovn.kubernetes.io/

interface

eth1 The name of the bridged NIC in the node.

net1.provider-network.ovn.kubernetes.io/mtu 1500 MTU of bridged NIC in node

apiVersion: kubeovn.io/v1
kind: Vlan
metadata:
 name: vlan1
spec:
 id: 0
 provider: net1

•

•

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: subnet1
spec:

protocol: IPv4
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
vlan: vlan1
disableGatewayCheck: false

•

•

2.3.5 Dynamically Create Underlay Networks via CRD

- 16/324 - 2025 Kube-OVN Team

2.3.6 Create Pod

You can create containers in the normal way, check whether the container IP is in the specified range and whether the container

can interoperate with the physical network.

For fixed IP requirements, please refer to Fixed Addresses

2.3.7 Logical Gateway

For cases where no gateway exists in the physical network, Kube-OVN supports the use of logical gateways configured in the

subnet in Underlay mode. To use this feature, set spec.logicalGateway to true for the subnet:

When this feature is turned on, the Pod does not use an external gateway, but a Logical Router created by Kube-OVN to forward

cross-subnet communication.

2.3.8 Interconnection of Underlay and Overlay Networks

If a cluster has both Underlay and Overlay subnets, by default, Pods in the Overlay subnet can access the Pod IPs in the Underlay

subnet via a gateway using NAT. From the perspective of Pods in the Underlay subnet, the addresses in the Overlay subnet are

external, and require the underlying physical device to forward, but the underlying physical device does not know the addresses

in the Overlay subnet and cannot forward. Therefore, Pods in the Underlay subnet cannot access Pods in the Overlay subnet

directly via Pod IPs.

If you need to enable communication between Underlay and Overlay networks, you need to set the u2oInterconnection of the

subnet to true . In this case, Kube-OVN will use an additional Underlay IP to connect the Underlay subnet and the ovn-cluster

logical router, and set the corresponding routing rules to enable communication. Unlike the logical gateway, this solution only

connects the Underlay and Overlay subnets within Kube-OVN, and other traffic accessing the Internet will still be forwarded

through the physical gateway.

Specify logical gateway IP

After the interworking function is enabled, an IP from the subnet will be randomly selected as the logical gateway. If you need to

specify the logical gateway of the Underlay Subnet, you can specify the field u2oInterconnectionIP .

Specify custom VPC for Underlay Subnet connection

By default, the Underlay Subnet will communicate with the Overlay Subnet on the default VPC. If you want to specify to

communicate with a certain VPC, after setting u2oInterconnection to true , specify the subnet.spec.vpc field as the name of the

VPC.

2.3.9 Notice

If you have an IP address configured on the network card of the node you are using, and the operating system configures the

network using Netplan (such as Ubuntu), it is recommended that you set the renderer of Netplan to NetworkManager and

configure a static IP address for the node's network card (disable DHCP).

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: subnet1
spec:

protocol: IPv4
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
vlan: vlan1
logicalGateway: true

network:
renderer: NetworkManager
ethernets:

eth0:
dhcp4: no
addresses:

2.3.6 Create Pod

- 17/324 - 2025 Kube-OVN Team

If you want to modify the IP or routing configuration of the network card, you need to execute the following commands after

modifying the Netplan configuration:

After executing the above commands, Kube-OVN will transfer the IP and routing from the network card to the OVS bridge.

If your operating system manages the network using NetworkManager (such as CentOS), you need to execute the following

command after modifying the network card configuration:

Notice: If the host nic's MAC is changed, Kube-OVN will not change the OVS bridge's MAC unless kube-ovn-cni is restarted.

2.3.10 Known Issues

When the physical network is enabled with hairpin, Pod network is abnormal

When physical networks enable hairpin or similar behaviors, problems such as gateway check failure when creating Pods and

abnormal network communication of Pods may occur. This is because the default MAC learning function of OVS bridge does not

support this kind of network environment.

To solve this problem, it is necessary to turn off hairpin (or modify the relevant configuration of physical network), or update the

Kube-OVN version.

When there are a large number of Pods, gateway check for new Pods fails

If there are a large number of Pods running on the same node (more than 300), it may cause packet loss due to the OVS flow

table resubmit times exceeding the upper limit of ARP broadcast packets.

To solve this issue, modify the OVN NB option bcast_arp_req_flood to false :

 PDF Slack Support

- 172.16.143.129/24
version: 2

netplan generate

nmcli connection reload netplan-eth0
nmcli device set eth0 managed yes

nmcli connection reload eth0
nmcli device set eth0 managed yes
nmcli -t -f GENERAL.STATE device show eth0 | grep -qw unmanaged || nmcli device reapply eth0

2022-11-13T08:43:46.782Z|00222|ofproto_dpif_upcall(handler5)|WARN|Flow: arp,in_port=331,vlan_tci=0x0000,dl_src=00:00:00:25:eb:
39,dl_dst=ff:ff:ff:ff:ff:ff,arp_spa=10.213.131.240,arp_tpa=10.213.159.254,arp_op=1,arp_sha=00:00:00:25:eb:39,arp_tha=ff:ff:ff:ff:ff:ff

bridge("br-int")

 0. No match.
 >>>> received packet on unknown port 331 <<<<
 drop

Final flow: unchanged
Megaflow: recirc_id=0,eth,arp,in_port=331,dl_src=00:00:00:25:eb:39
Datapath actions: drop
2022-11-13T08:44:34.077Z|00224|ofproto_dpif_xlate(handler5)|WARN|over 4096 resubmit actions on bridge br-int while processing
arp,in_port=13483,vlan_tci=0x0000,dl_src=00:00:00:59:ef:
13,dl_dst=ff:ff:ff:ff:ff:ff,arp_spa=10.213.152.3,arp_tpa=10.213.159.254,arp_op=1,arp_sha=00:00:00:59:ef:13,arp_tha=ff:ff:ff:ff:ff:ff

kubectl ko nbctl set NB_Global . options:bcast_arp_req_flood=false

2.3.10 Known Issues

- 18/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 30, 2025

May 20, 2022

GitHub

2.3.11 Comments

2.3.11 Comments

- 19/324 - 2025 Kube-OVN Team

https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/bobz965
https://github.com/bobz965

2.4 Install on Talos

Talos Linux is a modern Linux distribution built for Kubernetes.

2.4.1 Deploy Kube-OVN via Helm Chart

You can deploy Kube-OVN on Talos Linux clusters with the following command:

If you want to use underlay as the default network, you need to pass the relevant chart values. Here is an example:

Logical network interfaces, such as VLAN, Bond, and Bridge, cannot be used as provider interfaces for Underlay networks. Physical

interfaces used for the Underlay network MUST be configured with ignore=true in the Talos machine configuration. Here is an

example:

 PDF Slack Support

July 30, 2025

April 16, 2025

GitHub

2.4.2 Comments

helm install kube-ovn kubeovn/kube-ovn --wait \
-n kube-system \
--version v1.14.4 \
--set OVN_DIR=/var/lib/ovn \
--set OPENVSWITCH_DIR=/var/lib/openvswitch \
--set DISABLE_MODULES_MANAGEMENT=true \
--set cni_conf.MOUNT_LOCAL_BIN_DIR=false

helm install kubeovn kubeovn/kube-ovn --wait \
-n kube-system \
--version v1.14.4 \
--set OVN_DIR=/var/lib/ovn \
--set OPENVSWITCH_DIR=/var/lib/openvswitch \
--set DISABLE_MODULES_MANAGEMENT=true \
--set cni_conf.MOUNT_LOCAL_BIN_DIR=false \
--set networking.NETWORK_TYPE=vlan \
--set networking.vlan.VLAN_INTERFACE_NAME=enp0s5f1 \
--set networking.vlan.VLAN_ID=0 \
--set networking.NET_STACK=ipv4 \
--set-json networking.EXCLUDE_IPS='"172.99.99.11..172.99.99.99"' \
--set-json ipv4.POD_CIDR='"172.99.99.0/24"' \
--set-json ipv4.POD_GATEWAY='"172.99.99.1"'

Note

machine:
network:

interfaces:
- interface: enp0s5f1

ignore: true

2.4 Install on Talos

- 20/324 - 2025 Kube-OVN Team

https://github.com/siderolabs/talos
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow
https://github.com/zhangzujian
https://github.com/zhangzujian

2.5 Uninstall

If you need to remove the Kube-OVN and replace it with another network plugin, please follow the steps below to remove all the

corresponding Kube-OVN component and OVS configuration to avoid interference with other network plugins.

Feel free to contact us with an Issue to give us feedback on why you don't use Kube-OVN to help us improve it.

2.5.1 Delete Resource in Kubernetes

Please choose the uninstall command based on your installation method:

2.5.2 Cleanup Config and Logs on Every Node

Run the following commands on each node to clean up the configuration retained by ovsdb and openvswitch:

2.5.3 Reboot Node

Reboot the machine to ensure that the corresponding NIC information and iptable/ipset rules are cleared to avoid the

interference with other network plugins:

 PDF Slack Support

July 22, 2025

May 24, 2022

GitHub

2.5.4 Comments

Script Uninstall Helm Uninstall

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/cleanup.sh
bash cleanup.sh

helm uninstall kube-ovn -n kube-system

rm -rf /var/run/openvswitch
rm -rf /var/run/ovn
rm -rf /etc/origin/openvswitch/
rm -rf /etc/origin/ovn/
rm -rf /etc/cni/net.d/00-kube-ovn.conflist
rm -rf /etc/cni/net.d/01-kube-ovn.conflist
rm -rf /var/log/openvswitch
rm -rf /var/log/ovn
rm -fr /var/log/kube-ovn

reboot

2.5 Uninstall

- 21/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/bobz965
https://github.com/bobz965

3. User Guide

3.1 Installation and Configuration Options

In One-Click Installation we use the default configuration for installation. Kube-OVN also supports more custom configurations,

which can be configured in the installation script, or later by changing the parameters of individual components. This document

will describe what these customization options do, and how to configure them.

3.1.1 Built-in Network Settings

Kube-OVN will configure two built-in Subnets during installation:

default Subnet, as the default subnet used by the Pod to assign IPs, with a default CIDR of 10.16.0.0/16 and a gateway of

10.16.0.1 .

The join subnet, as a special subnet for network communication between the Node and Pod, has a default CIDR of 100.64.0.0/16

and a gateway of 100.64.0.1 .

The configuration of these two subnets can be changed during installation via the installation scripts variables:

EXCLUDE_IP sets the address range for which kube-ovn-controller will not automatically assign from it, the format is:

192.168.10.20..192.168.10.30 .

Note that in the Overlay case these two Subnets CIDRs cannot conflict with existing host networks and Service CIDRs.

You can change the address range of both Subnets after installation by referring to Change Subnet CIDR and Change Join Subnet

CIDR.

3.1.2 Config Service CIDR

Since some of the iptables and routing rules set by kube-proxy will conflict with the rules set by Kube-OVN, Kube-OVN needs to

know the CIDR of the service to set the corresponding rules correctly.

This can be done by modifying the installation script:

You can also modify the args of the kube-ovn-controller Deployment after installation:

3.1.3 Overlay NIC Selection

In the case of multiple NICs on a node, Kube-OVN will select the NIC corresponding to the Kubernetes Node IP as the NIC for

cross-node communication between containers and establish the corresponding tunnel.

If you need to select another NIC to create a container tunnel, you can change it in the installation script:

This option supports regular expressions separated by commas, e.g. 'ens[a-z0-9],eth[a-z0-9]'.

It can also be adjusted after installation by modifying the args of the kube-ovn-cni DaemonSet:

1.

2.

POD_CIDR="10.16.0.0/16"
POD_GATEWAY="10.16.0.1"
JOIN_CIDR="100.64.0.0/16"
EXCLUDE_IPS=""

SVC_CIDR="10.96.0.0/12"

args:
- --service-cluster-ip-range=10.96.0.0/12

IFACE=eth1

3. User Guide

- 22/324 - 2025 Kube-OVN Team

If each machine has a different NIC name and there is no fixed pattern, you can use the node annotation ovn.kubernetes.io/

tunnel_interface to configure each node one by one. This annotation will override the configuration of iface .

3.1.4 Config MTU

Since Overlay encapsulation requires additional space, Kube-OVN will adjust the MTU of the container NIC based on the MTU of

the selected NIC when creating the container NIC. By default, the Pod NIC MTU is the host NIC MTU - 100 on the Overlay

Subnet, and the Pod NIC and host NIC have the same MTU on the Underlay Subnet.

If you need to adjust the size of the MTU under the Overlay subnet, you can modify the parameters of the kube-ovn-cni

DaemonSet:

3.1.5 Global Traffic Mirroring Setting

When global traffic mirroring is enabled, Kube-OVN will create a mirror0 virtual NIC on each node and copy all container

network traffic from the current machine to that NIC, Users can perform traffic analysis with tcpdump and other tools. This

function can be enabled in the installation script:

It can also be adjusted after installation by modifying the args of the kube-ovn-cni DaemonSet:

The ability to mirror traffic is disabled in the default installation, if you need fine-grained traffic mirroring or need to mirror

traffic to additional NICs please refer to Traffic Mirror.

3.1.6 LB Settings

Kube-OVN uses L2 LB in OVN to implement service forwarding. In Overlay scenarios, users can choose to use kube-proxy for

service traffic forwarding, in which case the LB function of Kube-OVN can be disabled to achieve better performance on the

control plane and data plane.

This feature can be configured in the installation script:

It can also be configured after installation by changing the args of the kube-ovn-controller Deployment:

The LB feature is enabled in the default installation.

The spec field enableLb has been added to the subnet crd definition since Kube-OVN v1.12.0 to migrate the LB function of Kube-

OVN to the subnet level. You can set whether to enable the LB function based on different subnets. The enable-lb parameter in

the kube-ovn-controller deployment is used as a global switch to control whether to create a load-balancer record. The enableLb

parameter added in the subnet is used to control whether the subnet is associated with a load-balancer record. After the previous

version is upgraded to v1.12.0, the enableLb parameter of the subnet will automatically inherit the value of the original global

switch parameter.

args:
- --iface=eth1

kubectl annotate node no1 ovn.kubernetes.io/tunnel_interface=ethx

args:
- --mtu=1333

ENABLE_MIRROR=true

args:
- --enable-mirror=true

ENABLE_LB=false

args:
- --enable-lb=false

3.1.4 Config MTU

- 23/324 - 2025 Kube-OVN Team

3.1.7 NetworkPolicy Settings

Kube-OVN uses ACLs in OVN to implement NetworkPolicy. Users can choose to disable the NetworkPolicy feature or use the

Cilium Chain approach to implement NetworkPolicy using eBPF. In this case, the NetworkPolicy feature of Kube-OVN can be

disabled to achieve better performance on the control plane and data plane.

This feature can be configured in the installation script:

It can also be configured after installation by changing the args of the kube-ovn-controller Deployment:

NetworkPolicy is enabled by default.

3.1.8 EIP and SNAT Settings

If the EIP and SNAT capabilities are not required on the default VPC, users can choose to disable them to reduce the

performance overhead of kube-ovn-controller in large scale cluster environments and improve processing speed.

This feature can be configured in the installation script:

It can also be configured after installation by changing the args of the kube-ovn-controller Deployment:

EIP and SNAT is enabled by default. More information can refer to EIP and SNAT.

3.1.9 Centralized Gateway ECMP Settings

The centralized gateway supports two mode of high availability, primary-backup and ECMP. If you want to enable ECMP mode,

you need to change the args of kube-ovn-controller Deployment:

Centralized gateway default installation under the primary-backup mode, more gateway-related content please refer to Config

Subnet.

The spec field enableEcmp has been added to the subnet crd definition since Kube-OVN v1.12.0 to migrate the ECMP switch to the

subnet level. You can set whether to enable ECMP mode based on different subnets. The enable-ecmp parameter in the kube-ovn-

controller deployment is no longer used. After the previous version is upgraded to v1.12.0, the subnet switch will automatically

inherit the value of the original global switch parameter.

3.1.10 Kubevirt VM Fixed Address Settings

For VM instances created by Kubevirt, kube-ovn-controller can assign and manage IP addresses in a similar way to the

StatefulSet Pod. This allows VM instances address fixed during start-up, shutdown, upgrade, migration, and other operations

throughout their lifecycle, making them more compatible with the actual virtualization user experience.

This feature is enabled by default after v1.10.6. To disable this feature, you need to change the following args in the kube-ovn-

controller Deployment:

ENABLE_NP=false

args:
- --enable-np=false

ENABLE_EIP_SNAT=false

args:
- --enable-eip-snat=false

args:
- --enable-ecmp=true

args:
- --keep-vm-ip=false

3.1.7 NetworkPolicy Settings

- 24/324 - 2025 Kube-OVN Team

3.1.11 CNI Settings

By default, Kube-OVN installs the CNI binary in the /opt/cni/bin directory and the CNI configuration file 01-kube-ovn.conflist in

the /etc/cni/net.d directory. If you need to change the installation location and the priority of the CNI configuration file, you can

modify the following parameters of the installation script.

Or change the Volume mount and args of the kube-ovn-cni DaemonSet after installation:

3.1.12 Tunnel Type Settings

The default encapsulation mode of Kube-OVN Overlay is Geneve, if you want to change it to Vxlan or STT, please adjust the

following parameters in the installation script:

Or change the environment variables of ovs-ovn DaemonSet after installation:

If you need to use the STT tunnel and need to compile additional kernel modules for ovs, please refer to Performance Tuning.

Please refer to Tunneling Protocol Selection for the differences between the different protocols in practice.

3.1.13 SSL Settings

The OVN DB API interface supports SSL encryption to secure the connection. To enable it, adjust the following parameters in the

installation script:

The SSL is disabled by default.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

CNI_CONF_DIR="/etc/cni/net.d"
CNI_BIN_DIR="/opt/cni/bin"
CNI_CONFIG_PRIORITY="01"

volumes:
- name: cni-conf

hostPath:
path: "/etc/cni/net.d"

- name: cni-bin
hostPath:

path:"/opt/cni/bin"
...
args:
- --cni-conf-name=01-kube-ovn.conflist

TUNNEL_TYPE="vxlan"

env:
- name: TUNNEL_TYPE

value: "vxlan"

ENABLE_SSL=true

3.1.11 CNI Settings

- 25/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/aminmr
https://github.com/aminmr
https://github.com/ShaPoHun
https://github.com/ShaPoHun
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/hongzhen-ma
https://github.com/hongzhen-ma

3.1.14 Comments

3.1.14 Comments

- 26/324 - 2025 Kube-OVN Team

3.2 Config Subnet

Subnet is a core concept and basic unit of use in Kube-OVN, and Kube-OVN organizes IP and network configuration in terms of

Subnet. Each Namespace can belong to a specific Subnet, and Pods under the Namespace automatically obtain IPs from the

Subnet they belong to and share the network configuration (CIDR, gateway type, access control, NAT control, etc.).

Unlike other CNI implementations where each node is bound to a subnet, in Kube-OVN the Subnet is a global level virtual

network configuration, and the addresses of one Subnet can be distributed on any node.

Note: Different subnets under the same VPC cannot contain the same IP, and different subnets connected to each other based on

VPC peering or VPN cannot contain the same IP.

There are some differences in the usage and configuration of Overlay and Underlay Subnets, and this document will describe the

common configurations and differentiated features of the different types of Subnets.

3.2.1 Default Subnet

To make it easier for users to get started quickly, Kube-OVN has a built-in default Subnet, all Namespaces that do not explicitly

declare subnet affiliation are automatically assigned IPs from the default subnet and the network information. The configuration

of this Subnet is specified at installation time, you can refer to Built-in Network Settings for more details. To change the CIDR of

the default Subnet after installation please refer to Change Subnet CIDR.

In Overlay mode, the default Subnet uses a distributed gateway and NAT translation for outbound traffic, which behaves much

the same as the Flannel's default behavior, allowing users to use most of the network features without additional configuration.

In Underlay mode, the default Subnet uses the physical gateway as the outgoing gateway and enables arping to check network

connectivity.

Check the Default Subnet

The default field in the default Subnet spec is set to true , and there is only one default Subnet in a cluster, named ovn-default .

3.2 Config Subnet

- 27/324 - 2025 Kube-OVN Team

3.2.2 Join Subnet

In the Kubernetes network specification, it is required that Nodes can communicate directly with all Pods. To achieve this in

Overlay network mode, Kube-OVN creates a join Subnet and creates a virtual NIC ovn0 at each node that connect to the join

subnet, through which the nodes and Pods can communicate with each other.

All network communication between Pods and Nodes will go through the ovn0 network interface. When a Node accesses a Pod, it

enters the virtual network via the ovn0 interface, and the virtual network then connects to the host network through the ovn0

interface.

The configuration of this Subnet is specified at installation time, you can refer to Built-in Network Settings for more details. To

change the CIDR of the Join Subnet after installation please refer to Change Join CIDR.

Check the Join Subnet

The default name of this subnet is join . There is generally no need to make changes to the network configuration except the

CIDR.

Check the ovn0 NIC at the node:

kubectl get subnet ovn-default -o yaml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

creationTimestamp: "2019-08-06T09:33:43Z"
generation: 1
name: ovn-default
resourceVersion: "1571334"
selfLink: /apis/kubeovn.io/v1/subnets/ovn-default
uid: 7e2451f8-fb44-4f7f-b3e0-cfd27f6fd5d6

spec:
cidrBlock: 10.16.0.0/16
default: true
excludeIps:
- 10.16.0.1
gateway: 10.16.0.1
gatewayType: distributed
natOutgoing: true
private: false
protocol: IPv4

kubectl get subnet join -o yaml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

creationTimestamp: "2019-08-06T09:33:43Z"
generation: 1
name: join
resourceVersion: "1571333"
selfLink: /apis/kubeovn.io/v1/subnets/join
uid: 9c744810-c678-4d50-8a7d-b8ec12ef91b8

spec:
cidrBlock: 100.64.0.0/16
default: false
excludeIps:
- 100.64.0.1
gateway: 100.64.0.1
gatewayNode: ""
gatewayType: ""
natOutgoing: false
private: false
protocol: IPv4

ifconfig ovn0
ovn0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1420

inet 100.64.0.4 netmask 255.255.0.0 broadcast 100.64.255.255
inet6 fe80::800:ff:fe40:5 prefixlen 64 scopeid 0x20<link>
ether 0a:00:00:40:00:05 txqueuelen 1000 (Ethernet)
RX packets 18 bytes 1428 (1.3 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 19 bytes 1810 (1.7 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

3.2.2 Join Subnet

- 28/324 - 2025 Kube-OVN Team

3.2.3 Create Custom Subnets

Here we describe the basic operation of how to create a Subnet and associate it with a Namespace, for more advanced

configuration, please refer to the subsequent content.

Create Subnet

cidrBlock : Subnet CIDR range, different Subnet CIDRs under the same VPC cannot overlap.

excludeIps : The address list is reserved so that the container network will not automatically assign addresses in the list, which

can be used as a fixed IP address assignment segment or to avoid conflicts with existing devices in the physical network in

Underlay mode.

gateway : For this subnet gateway address, Kube-OVN will automatically assign the corresponding logical gateway in Overlay

mode, and the address should be the underlying physical gateway address in Underlay mode.

namespaces : Bind the list of Namespace for this Subnet. Pods under the Namespace will be assigned addresses from the

current Subnet after binding.

routeTable : Associate the route table, default is main table, route table definition please defer to Static Routes

Create Pod in the Subnet

Workload Subnet Binding

By default, Pods will be assigned IP addresses from the subnet belonging to the Namespace. If a specific subnet needs to be

specified for a Workload, it can be achieved by setting the Pod's annotation ovn.kubernetes.io/logical_switch :

If you need to bind a subnet to a Workload type resource such as Deployment or StatefulSet, you need to set the

ovn.kubernetes.io/logical_switch Annotation in spec.template.metadata.annotations .

cat <<EOF | kubectl create -f -
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:
 name: subnet1
spec:
 protocol: IPv4
 cidrBlock: 10.66.0.0/16
 excludeIps:
 - 10.66.0.1..10.66.0.10
 - 10.66.0.101..10.66.0.151
 gateway: 10.66.0.1
 gatewayType: distributed
 natOutgoing: true
 routeTable: ""
 namespaces:
 - ns1
 - ns2
EOF

•

•

•

•

•

kubectl create ns ns1
namespace/ns1 created

kubectl run nginx --image=docker.io/library/nginx:alpine -n ns1
deployment.apps/nginx created

kubectl get pod -n ns1 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-74d5899f46-n8wtg 1/1 Running 0 10s 10.66.0.11 node1 <none> <none>

apiVersion: v1
kind: Pod
metadata:

name: another-subnet
annotations:

ovn.kubernetes.io/logical_switch: subnet1
spec:

containers:
- name: another-subnet

image: docker.io/library/nginx:alpine

3.2.3 Create Custom Subnets

- 29/324 - 2025 Kube-OVN Team

3.2.4 Overlay Subnet Gateway Settings

This feature only works for Overlay mode Subnets, Underlay type Subnets need to use the underlying physical gateway to access

the external network.

Pods under the Overlay Subnet need to access the external network through a gateway, and Kube-OVN currently supports two

types of gateways: distributed gateway and centralized gateway which can be changed in the Subnet spec.

Both types of gateways support the natOutgoing setting, which allows the user to choose whether snat is required when the Pod

accesses the external network.

Distributed Gateway

The default type of gateway for the Subnet, each node will act as a gateway for the pod on the current node to access the

external network. The packets from container will flow into the host network stack from the local ovn0 NIC, and then forwarding

the network according to the host's routing rules. When natOutgoing is true , the Pod will use the IP of the current host when

accessing the external network.

Example of a Subnet, where the gatewayType field is distributed :

Centralized Gateway

Note: Pods under a centralized subnet cannot be accessed through hostport or a NodePort type Service with

externalTrafficPolicy: Local .

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: distributed
spec:

protocol: IPv4
cidrBlock: 10.166.0.0/16
default: false
excludeIps:
- 10.166.0.1
gateway: 10.166.0.1
gatewayType: distributed
natOutgoing: true

3.2.4 Overlay Subnet Gateway Settings

- 30/324 - 2025 Kube-OVN Team

If you want traffic within the Subnet to access the external network using a fixed IP for security operations such as auditing and

whitelisting, you can set the gateway type in the Subnet to centralized. In centralized gateway mode, packets from Pods

accessing the external network are first routed to the ovn0 NIC of a specific nodes, and then outbound through the host's routing

rules. When natOutgoing is true , the Pod will use the IP of a specific nodes when accessing the external network.

The centralized gateway example is as follows, where the gatewayType field is centralized and gatewayNode is the NodeName of

the particular machine in Kubernetes.

If a centralized gateway wants to specify a specific NIC of a machine for outbound networking, gatewayNode format can be

changed to kube-ovn-worker:172.18.0.2, kube-ovn-control-plane:172.18.0.3 .

The centralized gateway defaults to primary-backup mode, with only the primary node performing traffic forwarding. If you

need to switch to ECMP mode, please refer to ECMP Settings.

The spec field enableEcmp has been added to the subnet crd definition since Kube-OVN v1.12.0 to migrate the ECMP switch to

the subnet level. You can set whether to enable ECMP mode based on different subnets. The enable-ecmp parameter in the

kube-ovn-controller deployment is no longer used. After the previous version is upgraded to v1.12.0, the subnet switch will

automatically inherit the value of the original global switch parameter.

3.2.5 Subnet ACL

For scenarios with fine-grained ACL control, Subnet of Kube-OVN provides ACL to enable fine-grained rules.

The ACL rules in Subnet are the same as the ACL rules in OVN, and you can refer to ovn-nb ACL Table for more details. The

supported filed in match can refer to ovn-sb Logical Flow Table.

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: centralized
spec:

protocol: IPv4
cidrBlock: 10.166.0.0/16
default: false
excludeIps:
- 10.166.0.1
gateway: 10.166.0.1
gatewayType: centralized
gatewayNode: "node1,node2"
natOutgoing: true

•

•

•

3.2.5 Subnet ACL

- 31/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man5/ovn-nb.5.html#ACL_TABLE
https://man7.org/linux/man-pages/man5/ovn-sb.5.html#Logical_Flow_TABLE

Example of an ACL rule that allows Pods with IP address 10.10.0.2 to access all addresses, but does not allow other addresses to

access itself, is as follows:

In some scenarios, users hope that the internal traffic of the subnet configured with ACL rules will not be affected, which can be

achieved by configuring allowEWTraffic: true .

3.2.6 Subnet Isolation

The function of Subnet ACL can cover the function of Subnet isolation with better flexibility, we recommend using Subnet ACL to

do the corresponding configuration.

By default the Subnets created by Kube-OVN can communicate with each other, and Pods can also access external networks

through the gateway.

To control access between Subnets, set private to true in the subnet spec, and the Subnet will be isolated from other Subnets

and external networks and can only communicate within the Subnet. If you want to open a whitelist, you can set it by

allowSubnets . The CIDRs in allowSubnets can access the Subnet bidirectionally.

Enable Subnet Isolation Examples

3.2.7 Underlay Settings

This part of the feature is only available for Underlay type Subnets.

vlan : If an Underlay network is used, this field is used to control which Vlan CR the Subnet is bound to. This option defaults to

the empty string, meaning that the Underlay network is not used.

logicalGateway : Some Underlay environments are pure Layer 2 networks, with no physical Layer 3 gateway. In this case a

virtual gateway can be set up with the OVN to connect the Underlay and Overlay networks. The default value is: false .

3.2.8 Gateway Check Settings

By default kube-ovn-cni will request the gateway using ICMP or ARP protocol after starting the Pod and wait for the return to

verify that the network is working properly. Some Underlay environment gateways cannot respond to ICMP requests, or

scenarios that do not require external connectivity, the checking can be disabled .

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: acl
spec:

allowEWTraffic: false
acls:

- action: drop
direction: to-lport
match: ip4.dst == 10.10.0.2 && ip
priority: 1002

- action: allow-related
direction: from-lport
match: ip4.src == 10.10.0.2 && ip
priority: 1002

cidrBlock: 10.10.0.0/24

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: private
spec:

protocol: IPv4
default: false
namespaces:
- ns1
- ns2
cidrBlock: 10.69.0.0/16
private: true
allowSubnets:
- 10.16.0.0/16
- 10.18.0.0/16

•

•

3.2.6 Subnet Isolation

- 32/324 - 2025 Kube-OVN Team

3.2.9 Multicast-Snoop Setting

By default, if a Pod in a subnet sends a multicast packet, OVN's default behavior is to broadcast the multicast packet to all Pods

in the subnet. If turned on the subnet's multicast snoop switch, OVN will forward based on the multicast table Multicast_Group in

the South Database instead of broadcasting.

3.2.10 Subnet MTU Setting

Configure the MTU of the Pod under Subnet. After configuration, you need to restart the Pod under Subnet to take effect.

3.2.11 Other Advanced Settings

Configure IPPool

Default VPC NAT Policy Rule

Manage QoS

Manage Multiple Interface

DHCP

External Gateway

Cluster Inter-Connection with OVN-IC

VIP Reservation

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

3.2.12 Comments

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: disable-gw-check
spec:

disableGatewayCheck: true

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: sample1
spec:

enableMulticastSnoop: true

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: sample1
spec:

mtu: 1300

•

•

•

•

•

•

•

•

+2

3.2.9 Multicast-Snoop Setting

- 33/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/changluyi
https://github.com/changluyi
https://github.com/lynn901
https://github.com/lynn901
https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/kubeovn/docs/blob/master/docs/guide/subnet.en.md

3.3 DualStack

Different subnets in Kube-OVN can support different IP protocols. IPv4, IPv6 and dual-stack types of subnets can exist within one

cluster. However, it is recommended to use a uniform protocol type within a cluster to simplify usage and maintenance.

In order to support dual-stack, the host network needs to meet the dual-stack requirements, and the Kubernetes-related

parameters need to be adjusted, please refer to official guide to dual-stack.

3.3.1 Create dual-stack Subnet

When configuring a dual stack Subnet, you only need to set the corresponding subnet CIDR format as cidr=<IPv4 CIDR>,<IPv6

CIDR> .

The CIDR order requires IPv4 to come first and IPv6 to come second, as follows.

If you need to use a dual stack for the default subnet during installation, you need to change the following parameters in the

installation script:

3.3.2 Check Pod Address

Pods configured for dual-stack networks will be assigned both IPv4 and IPv6 addresses from that subnet, and the results will be

displayed in the annotation of the Pod:

 PDF Slack Support

February 15, 2023

May 24, 2022

GitHub

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: ovn-test
spec:

cidrBlock: 10.16.0.0/16,fd00:10:16::/64
excludeIps:
- 10.16.0.1
- fd00:10:16::1
gateway: 10.16.0.1,fd00:10:16::1

POD_CIDR="10.16.0.0/16,fd00:10:16::/64"
JOIN_CIDR="100.64.0.0/16,fd00:100:64::/64"

apiVersion: v1
kind: Pod
metadata:

annotations:
ovn.kubernetes.io/allocated: "true"
ovn.kubernetes.io/cidr: 10.16.0.0/16,fd00:10:16::/64
ovn.kubernetes.io/gateway: 10.16.0.1,fd00:10:16::1
ovn.kubernetes.io/ip_address: 10.16.0.9,fd00:10:16::9
ovn.kubernetes.io/logical_switch: ovn-default
ovn.kubernetes.io/mac_address: 00:00:00:14:88:09
ovn.kubernetes.io/network_types: geneve
ovn.kubernetes.io/routed: "true"

...
podIP: 10.16.0.9

podIPs:
- ip: 10.16.0.9
- ip: fd00:10:16::9

3.3 DualStack

- 34/324 - 2025 Kube-OVN Team

https://kubernetes.io/docs/concepts/services-networking/dual-stack
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

3.3.3 Comments

3.3.3 Comments

- 35/324 - 2025 Kube-OVN Team

3.4 Fixed Addresses

By default, Kube-OVN randomly assigns IPs and Macs based on the Subnet to which the Pod's Namespace belongs. For

workloads that require fixed addresses, Kube-OVN provides multiple methods of fixing addresses depending on the scenario.

Single Pod fixed IP/Mac.

Workload IP Pool to specify fixed addresses.

StatefulSet fixed address.

KubeVirt VM fixed address.

3.4.1 Single Pod Fixed IP/Mac

You can specify the IP/Mac required for the Pod by annotation when creating the Pod. The kube-ovn-controller will skip the

address random assignment phase and use the specified address directly after conflict detection, as follows:

The following points need to be noted when using annotation.

The IP/Mac used cannot conflict with an existing IP/Mac.

The IP must be in the CIDR range of the Subnet it belongs to.

You can specify only IP or Mac. When you specify only one, the other one will be assigned randomly.

3.4.2 Workload IP Pool

Kube-OVN supports setting fixed IPs for Workloads (Deployment/StatefulSet/DaemonSet/Job/CronJob) via annotation

ovn.kubernetes.io/ip_pool . kube-ovn-controller will automatically select the IP specified in ovn.kubernetes.io/ip_pool and

perform conflict detection.

The Annotation of the IP Pool needs to be added to the annotation field in the template . In addition to Kubernetes built-in

workload types, other user-defined workloads can also be assigned fixed addresses using the same approach.

Deployment With Fixed IPs

•

•

•

•

apiVersion: apps/v1
kind: Deployment
metadata:

name: ippool
labels:

app: ippool
spec:

replicas: 2
selector:

matchLabels:
app: ippool

template:
metadata:

labels:
app: ippool

annotations:
ovn.kubernetes.io/ip_pool: 10.16.0.15,10.16.0.16,10.16.0.17 // for dualstack ippool use semicolon to separate addresses 10.16.0.15,fd00:10:16::000E;

10.16.0.16,fd00:10:16::0
spec:

containers:
- name: ippool

image: docker.io/library/nginx:alpine

1.

2.

3.

apiVersion: apps/v1
kind: Deployment
metadata:

namespace: ls1
name: starter-backend
labels:

app: starter-backend
spec:

replicas: 2
selector:

matchLabels:
app: starter-backend

template:

3.4 Fixed Addresses

- 36/324 - 2025 Kube-OVN Team

Using a fixed IP for Workload requires the following:

The IP in ovn.kubernetes.io/ip_pool should belong to the CIDR of the Subnet.

The IP in ovn.kubernetes.io/ip_pool cannot conflict with an IP already in use.

When the number of IPs in ovn.kubernetes.io/ip_pool is less than the number of replicas, the extra Pods will not be created. You

need to adjust the number of IPs in ovn.kubernetes.io/ip_pool according to the update policy of the workload and the scaling plan.

3.4.3 StatefulSet Fixed Address

StatefulSet supports fixed IP by default, and like other Workload, you can use ovn.kubernetes.io/ip_pool to specify the range of

IP used by a Pod.

Since StatefulSet is mostly used for stateful services, which have higher requirements for fixed addresses, Kube-OVN has made

special enhancements:

Pods are assigned IPs in ovn.kubernetes.io/ip_pool in order. For example, if the name of the StatefulSet is web, web-0 will use the

first IP in ovn.kubernetes.io/ip_pool , web-1 will use the second IP, and so on.

The logical_switch_port in the OVN is not deleted during update or deletion of the StatefulSet Pod, and the newly generated Pod

directly reuses the old logical port information. Pods can therefore reuse IP/Mac and other network information to achieve similar

state retention as StatefulSet Volumes.

Based on the capabilities of 2, for StatefulSet without the ovn.kubernetes.io/ip_pool annotation, a Pod is randomly assigned an IP/

Mac when it is first generated, and then the network information remains fixed for the lifetime of the StatefulSet.

StatefulSet Example

You can try to delete the Pod under StatefulSet to observe if the Pod IP changes.

Updating StatefulSet Pod IPs

Since the IPs of StatefulSet Pods are bound to their lifecycle along with the Pod names, directly updating the ovn.kubernetes.io/

ip_pool annotation in the StatefulSet will not update the Pod IPs.

If you need to update the IPs of StatefulSet Pods, first scale the StatefulSet replicas down to 0. Then, update the annotation and

restore the StatefulSet replicas afterward.

metadata:
labels:

app: starter-backend
annotations:

ovn.kubernetes.io/ip_pool: 10.16.0.15,10.16.0.16,10.16.0.17 // for dualstack ippool use semicolon to separate addresses 10.16.0.15,fd00:10:16::000E;
10.16.0.16,fd00:10:16::000F;10.16.0.17,fd00:10:16::0010

spec:
containers:
- name: backend

image: docker.io/library/nginx:alpine

1.

2.

3.

1.

2.

3.

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: web
spec:

serviceName: "nginx"
replicas: 2
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx

image: docker.io/library/nginx:alpine
ports:
- containerPort: 80

name: web

3.4.3 StatefulSet Fixed Address

- 37/324 - 2025 Kube-OVN Team

3.4.4 KubeVirt VM Fixed Address

For VM instances created by KubeVirt, kube-ovn-controller can assign and manage IP addresses in a similar way to the

StatefulSet Pod. This allows VM instances address fixed during start-up, shutdown, upgrade, migration, and other operations

throughout their lifecycle, making them more compatible with the actual virtualization user experience.

 PDF Slack Support

June 13, 2025

May 20, 2022

GitHub

3.4.5 Comments

3.4.4 KubeVirt VM Fixed Address

- 38/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/liruonian
https://github.com/liruonian
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/bobz965
https://github.com/bobz965
https://github.com/loan75
https://github.com/loan75

3.5 Reserved IP for Specific Resources

IP is used to maintain the IP address of Pod or VirtualMachine (VM). The lifecycle maintenance of IP includes the following

business scenarios:

IP is created with Pod and deleted with Pod.

VM IP is retained by configuring ENABLE_KEEP_VM_IP. This type of IP is created with VM Pod, but not deleted with VM Pod.

Statefulset Pod IP will automatically decide whether to retain Pod IP based on the capacity of Statefulset and the sequence

number of Pod.

In actual business use, it is often necessary to reserve IP resources in advance. The business scenarios for reserving IP include

the following two types:

Pod or VM has been created and needs to reserve IP

Pod or VM has not been created yet and needs to reserve IP

In the above scenarios, the naming correspondence between IP and Pod remains consistent:

Naming format of Pod IP: Pod-name.Pod-namespace(.subnet-provider)

Naming format of VM Pod IP: vm-name.Pod-namespace.(subnet-provider)

If you are unsure about these parameters and just want to simply reserve IP, please use IP Pool.

Specifically, this function is to reserve IP for specific Pod or VM. In the creation process of reserved IP, it is necessary to specify

resource name, resource type, namespace, subnet and other necessary parameters. For fixed IP reservation, it is necessary to

specify IP address and MAC address (if necessary).

Note: The previous implementation of Pod using vip to occupy IP is deprecated. (These two functions overlap)

3.5.1 1. Create Reserved IP

Pod or VM has been created and needs to reserve IP

Pod or VM has not been created yet and needs to reserve IP

Reserving IP is just an extended function, which supports Pod to use the reserved IP, but the usage method, naming rules and

business logic of IP created with Pod are consistent. Therefore, when creating a reserved IP, it is necessary to clearly know what

resources will use this IP in the future, and the type, Pod name or VM name, namespace, subnet and other information must be

accurately filled in. When using this IP, the business needs to verify whether the Pod and VM bound to the IP are consistent with

the attributes of the IP itself, otherwise the Pod or VM cannot use this IP.

The creation process of IP CR controller only handles the business scenario of reserving IP, and does not handle the IP resources

created with Pod. In the process of IP resources created with Pod, the creation of LSP is before the creation of IP CR, so it can be

judged based on whether LSP exists. In the processing process of IP CR controller, it will first judge whether LSP exists. If it

exists, it will not handle this business logic: the business logic of IP created with Pod. The creation of reserved IP supports

automatic allocation of IP and manual specification of IP. The creation process of IP will only implement IP occupation, but will

not create LSP. The creation of LSP is still maintained in the process of Pod creation. The creation process of IP CR is just to

reserve IP. This kind of IP will automatically add a keep-ip label, indicating that it is permanently reserved and will not be

cleaned up with the deletion of Pod. This kind of reserved IP needs to be managed by the business or administrator, and GC will

not automatically handle this IP.

1.1 Auto Allocate Address for Reserved IP

If you just want to reserve some IPs and have no requirements for the IP address itself, you can use the following yaml to create:

• a.

• a.

• a.

• a.

• a.

•

•

•

•

cat 01-dynamic.yaml

3.5 Reserved IP for Specific Resources

- 39/324 - 2025 Kube-OVN Team

subnet : The IP address is reserved from the Subnet.

podType : Used to specify the Owner type of the Pod: StatefulSet , VirtualMachine .

podName : Pod name or VirtualMachine name.

namespace : Used to specify the namespace where the IP resource resides, Pod namespace or VirtualMachine namespace.

Note: These IP properties are not allowed to change

Query the IP address after the IP address is created:

1.2 Specifies the reserved IP address

If there is a need for the IP address of the reserved IP, the following yaml can be used for fixed allocation:

apiVersion: kubeovn.io/v1
kind: IP
metadata:

name: vm-dynamic-01.default
spec:

subnet: ovn-default
podType: "VirtualMachine"
namespace: default
podName: vm-dynamic-01

•

•

•

•

kubectl get subnet ovn-default
NAME PROVIDER VPC PROTOCOL CIDR PRIVATE NAT DEFAULT GATEWAYTYPE V4USED V4AVAILABLE V6USED V6AVAILABLE
EXCLUDEIPS U2OINTERCONNECTIONIP
ovn-default ovn ovn-cluster IPv4 10.16.0.0/16 false true true distributed 7 65526 0 0
["10.16.0.1"]

kubectl get ip vm-dynamic-01.default -o yaml
apiVersion: kubeovn.io/v1
kind: IP
metadata:

annotations:
kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"kubeovn.io/v1","kind":"IP","metadata":{"annotations":{},"name":"vm-dynamic-01.default"},"spec":{"namespace":"default","podName":"vm-
dynamic-01","podType":"VirtualMachine","subnet":"ovn-default"}}

creationTimestamp: "2024-01-29T03:05:40Z"
finalizers:
- kube-ovn-controller
generation: 2
labels:

ovn.kubernetes.io/ip_reserved: "true" # reserved ip
ovn.kubernetes.io/node-name: ""
ovn.kubernetes.io/subnet: ovn-default

name: vm-dynamic-01.default
resourceVersion: "1571"
uid: 89d05a26-294a-450b-ab63-1eaa957984d7

spec:
attachIps: []
attachMacs: []
attachSubnets: []
containerID: ""
ipAddress: 10.16.0.13
macAddress: 00:00:00:86:C6:36
namespace: default
nodeName: ""
podName: vm-dynamic-01
podType: VirtualMachine
subnet: ovn-default
v4IpAddress: 10.16.0.13
v6IpAddress: ""

kubectl ko nbctl show ovn-default | grep vm-dynamic-01.default
The reserved IP address is assigned only in the IPAM, and the LSP is not created. Therefore, you cannot view the IP address

cat 02-static.yaml

apiVersion: kubeovn.io/v1
kind: IP
metadata:

name: pod-static-01.default
spec:

subnet: ovn-default
podType: ""
namespace: default
podName: pod-static-01
v4IpAddress: 10.16.0.3
v6IpAddress:

kubectl get ip pod-static-01.default -o yaml
apiVersion: kubeovn.io/v1
kind: IP
metadata:

3.5.1 1. Create Reserved IP

- 40/324 - 2025 Kube-OVN Team

v4IpAddress : Specify an IPv4 address that is within the CIDR range of the subnet.

v6IpAddress : Specify an IPv6 address that is within the CIDR range of the subnet.

Pod use reserved IP

Note: The Pod(VMS) name and namespace must be the same as the reserved IP address, otherwise the Pod(VMS) cannot use the

IP address.

After a Pod or VM is deleted, the IP CR remains.

3.5.2 2. Delete

The kube-ovn-controller GC process does not clean up individual IP resources. To clear an IP address and its LSPS, delete the IP

CR resource.

The IP deletion process formats the ipam key and LSP name based on the podName, namespace, and subnet provider in the IP

attribute, releases the IPAM slot, deletes the LSP, and clears the Finalizer of the IP.

 PDF Slack Support

July 30, 2025

January 25, 2024

GitHub

3.5.3 Comments

annotations:
kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"kubeovn.io/v1","kind":"IP","metadata":{"annotations":{},"name":"pod-static-01.default"},"spec":{"namespace":"default","podName":"pod-
static-01","podType":"","subnet":"ovn-default","v4IpAddress":"10.16.0.3","v6IpAddress":null}}

creationTimestamp: "2024-01-29T03:08:28Z"
finalizers:
- kube-ovn-controller
generation: 2
labels:

ovn.kubernetes.io/ip_reserved: "true"
ovn.kubernetes.io/node-name: ""
ovn.kubernetes.io/subnet: ovn-default

name: pod-static-01.default
resourceVersion: "1864"
uid: 11fc767d-f57d-4520-89f9-448f9b272bca

spec:
attachIps: []
attachMacs: []
attachSubnets: []
containerID: ""
ipAddress: 10.16.0.3
macAddress: 00:00:00:4D:B4:36
namespace: default
nodeName: ""
podName: pod-static-01
podType: ""
subnet: ovn-default
v4IpAddress: 10.16.0.3
v6IpAddress: ""

•

•

kubectl get po -n default -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod-static-01 1/1 Running 0 30s 10.16.0.3 kube-ovn-worker <none> <none>

3.5.2 2. Delete

- 41/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/bobz965
https://github.com/bobz965
https://github.com/web-flow
https://github.com/web-flow

3.6 Configure IPPool

IPPool is a more granular IPAM management unit than Subnet. You can subdivide the subnet segment into multiple units through

IPPool, and each unit is bound to one or more namespaces.

3.6.1 Instructions

Below is an example:

Field description:

3.6.2 Precautions

To ensure compatibility with Workload Universal IP Pool Fixed Address, the name of the IP pool cannot be an IP address;

The .spec.ips of the IP pool can specify an IP address beyond the scope of the subnet, but the actual effective IP address is the

intersection of .spec.ips and the CIDR of the subnet;

Different IP pools of the same subnet cannot contain the same (effective) IP address;

The .spec.ips of the IP pool can be modified dynamically;

The IP pool will inherit the reserved IP of the subnet. When randomly assigning an IP address from the IP pool, the reserved IP

included in the IP pool will be skipped;

When randomly assigning an IP address from a subnet, it will only be assigned from a range other than all IP pools in the subnet.

 PDF Slack Support

July 30, 2025

July 10, 2023

GitHub

3.6.3 Comments

apiVersion: kubeovn.io/v1
kind: IPPool
metadata:

name: pool-1
spec:

subnet: ovn-default
ips:
- "10.16.0.201"
- "10.16.0.210/30"
- "10.16.0.220..10.16.0.230"
namespaces:
- ns-1

Field Usage Comment

subnet Specify the subnet to which it belongs Required

ips Specify IP ranges Support three formats: , and ... Support IPv6.

namespaces Specifies the bound namespaces Optional

1.

2.

3.

4.

5.

6.

3.6 Configure IPPool

- 42/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/loan75
https://github.com/loan75
https://github.com/zhangzujian
https://github.com/zhangzujian

3.7 Custom Routes

Custom routes can be configured via Pod's annotations. Here is an example:

Do not set the dst field if you want to configure the default route.

For workloads such as Deployment, DaemonSet and StatefulSet, custom routes must be configured via

.spec.template.metadata.annotations :

 PDF Slack Support

September 26, 2023

February 16, 2023

GitHub

3.7.1 Comments

apiVersion: v1
kind: Pod
metadata:

name: custom-routes
annotations:

ovn.kubernetes.io/routes: |
[{

"dst": "192.168.0.101/24",
"gw": "10.16.0.254"

}, {
"gw": "10.16.0.254"

}]
spec:

containers:
- name: nginx

image: docker.io/library/nginx:alpine

apiVersion: apps/v1
kind: Deployment
metadata:

name: custom-routes
labels:

app: nginx
spec:

replicas: 2
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

annotations:
ovn.kubernetes.io/routes: |

[{
"dst": "192.168.0.101/24",
"gw": "10.16.0.254"

}, {
"gw": "10.16.0.254"

}]
spec:

containers:
- name: nginx

image: docker.io/library/nginx:alpine

3.7 Custom Routes

- 43/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/liruonian
https://github.com/liruonian
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/zhangzujian
https://github.com/zhangzujian

3.8 EIP and SNAT

This configuration is for the network under the default VPC. User-defined VPCS support two types of NAT. Please refer to:

VPC Iptables NAT Gateway

VPC OVN NAT Gateway

Any VPC supports the use of any one or more external subnets, but some factors need to be considered:

If the user only needs to use the OVN NAT function for subnets under the default VPC and uses it through the pod annotation

method, please refer to the current documentation.

If the subnets under any VPC of the user need to use the OVN NAT function, or wish to maintain one or more external

networks through provider network, vlan, subnet CRD, as well as through OVN-EIP, OVN-DNAT, OVN-FIP, For maintaining EIP

and NAT, please refer to ovn-snat CRD VPC OVN NAT Gateway.

If the subnets under any VPC of the user need to use the Iptables NAT function, please refer to VPC Iptables NAT Gateway.

Kube-OVN supports SNAT and EIP functionality at the Pod level using the L3 Gateway feature in OVN. By using SNAT, a group of

Pods can share an IP address for external access. With the EIP feature, a Pod can be directly associated with an external IP.

External services can access the Pod directly through the EIP, and the Pod will also access external services through this EIP.

3.8.1 Preparation

In order to use the OVN's L3 Gateway capability, a separate NIC must be bridged into the OVS bridge for overlay and underlay

network communication. The host must have other NICs for management.

Since packets passing through NAT will go directly to the Underlay network, it is important to confirm that such packets can

pass safely on the current network architecture.

Currently, there is no conflict detection for EIP and SNAT addresses, and an administrator needs to manually assign them to

avoid address conflicts.

3.8.2 Create Config

Create ConfigMap ovn-external-gw-config in kube-system Namespace:

•

•

•

•

•

•

•

•

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-external-gw-config
namespace: kube-system

data:
enable-external-gw: "true"
external-gw-nodes: "kube-ovn-worker"
external-gw-nic: "eth1"
external-gw-addr: "172.56.0.1/16"

3.8 EIP and SNAT

- 44/324 - 2025 Kube-OVN Team

enable-external-gw : Whether to enable SNAT and EIP functions.

type : centralized or distributed , Default is centralized If distributed is used, all nodes of the cluster need to have the same

name NIC to perform the gateway function.

external-gw-nodes : In centralized mode, The names of the node performing the gateway role, comma separated..

external-gw-nic : The name of the NIC that performs the role of a gateway on the node.

external-gw-addr : The IP and mask of the physical network gateway.

nic-ip , nic-mac : The IP and Mac assigned to the logical gateway port needs to be an unoccupied IP and Mac for the physical

subnet.

3.8.3 Confirm the Configuration Take Effect

Check the OVN-NB status to confirm that the ovn-external logical switch exists and that the correct address and chassis are

bound to the ovn-cluster-ovn-external logical router port.

Check the OVS status to confirm that the corresponding NIC is bridged into the br-external bridge:

3.8.4 Config EIP amd SNAT on Pod

SNAT and EIP can be configured by adding the ovn.kubernetes.io/snat or ovn.kubernetes.io/eip annotation to the Pod,

respectively:

nic-ip: "172.56.0.254/16"
nic-mac: "16:52:f3:13:6a:25"

•

•

•

•

•

•

kubectl ko nbctl show
switch 3de4cea7-1a71-43f3-8b62-435a57ef16a6 (external)

port localnet.external
type: localnet
addresses: ["unknown"]

port external-ovn-cluster
type: router
router-port: ovn-cluster-external

router e1eb83ad-34be-4ed5-9a02-fcc8b1d357c4 (ovn-cluster)
port ovn-cluster-external

mac: "ac:1f:6b:2d:33:f1"
networks: ["172.56.0.100/16"]
gateway chassis: [a5682814-2e2c-46dd-9c1c-6803ef0dab66]

kubectl ko vsctl ${gateway node name} show
e7d81150-7743-4d6e-9e6f-5c688232e130

Bridge br-external
Port br-external

Interface br-external
type: internal

Port eth1
Interface eth1

Port patch-localnet.external-to-br-int
Interface patch-localnet.external-to-br-int

type: patch
options: {peer=patch-br-int-to-localnet.external}

apiVersion: v1
kind: Pod
metadata:

name: pod-snat
annotations:

ovn.kubernetes.io/snat: 172.56.0.200
spec:

containers:
- name: pod-snat

image: docker.io/library/nginx:alpine

apiVersion: v1
kind: Pod
metadata:

name: pod-eip
annotations:

ovn.kubernetes.io/eip: 172.56.0.233
spec:

containers:
- name: pod-eip

image: docker.io/library/nginx:alpine

3.8.3 Confirm the Configuration Take Effect

- 45/324 - 2025 Kube-OVN Team

The EIP or SNAT rules configured by the Pod can be dynamically adjusted via kubectl or other tools, remember to remove the

ovn.kubernetes.io/routed annotation to trigger the routing change.

When the EIP or SNAT takes into effect, the ovn.kubernetes.io/routed annotation will be added back.

3.8.5 Advanced Configuration

Some args of kube-ovn-controller allow for advanced configuration of SNAT and EIP:

--external-gateway-config-ns : The Namespace of Configmap ovn-external-gw-config , default is kube-system .

--external-gateway-net : The name of the bridge to which the physical NIC is bridged, default is external .

--external-gateway-vlanid : Physical network Vlan Tag number, default is 0, i.e. no Vlan is used.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

3.8.6 Comments

kubectl annotate pod pod-gw ovn.kubernetes.io/eip=172.56.0.221 --overwrite
kubectl annotate pod pod-gw ovn.kubernetes.io/routed-

•

•

•

3.8.5 Advanced Configuration

- 46/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

3.9 Manage QoS

Kube-OVN supports two types of Pod level QoS:

Maximum bandwidth limit QoS.

linux-netem , QoS for simulating latency and packet loss that can be used for simulation testing.

Currently, only Pod level QoS is supported, and QoS restrictions at the Namespace or Subnet level are not supported.

3.9.1 Maximum Bandwidth Limit QoS

This type of QoS can be dynamically configured via Pod annotation and can be adjusted without restarting running Pod.

Bandwidth speed limit unit is Mbit/s .

Use annotation to dynamically adjust QoS:

Test QoS

Deploy the containers needed for performance testing:

Exec into one Pod and run iperf3 server:

Exec into the other Pod and run iperf3 client to connect above server address:

•

•

apiVersion: v1
kind: Pod
metadata:

name: qos
namespace: ls1
annotations:

ovn.kubernetes.io/ingress_rate: "3"
ovn.kubernetes.io/egress_rate: "1"

spec:
containers:
- name: qos

image: docker.io/library/nginx:alpine

kubectl annotate --overwrite pod nginx-74d5899f46-d7qkn ovn.kubernetes.io/ingress_rate=3

kind: DaemonSet
apiVersion: apps/v1
metadata:

name: perf
namespace: ls1
labels:

app: perf
spec:

selector:
matchLabels:

app: perf
template:

metadata:
labels:

app: perf
spec:

containers:
- name: nginx

image: docker.io/kubeovn/perf

kubectl exec -it perf-4n4gt -n ls1 sh
iperf3 -s

Server listening on 5201

kubectl exec -it perf-d4mqc -n ls1 sh
iperf3 -c 10.66.0.12
Connecting to host 10.66.0.12, port 5201
[4] local 10.66.0.14 port 51544 connected to 10.66.0.12 port 5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 86.4 MBytes 725 Mbits/sec 3 350 KBytes
[4] 1.00-2.00 sec 89.9 MBytes 754 Mbits/sec 118 473 KBytes
[4] 2.00-3.00 sec 101 MBytes 848 Mbits/sec 184 586 KBytes

3.9 Manage QoS

- 47/324 - 2025 Kube-OVN Team

Modify the ingress bandwidth QoS for the first Pod:

Test the Pod bandwidth again from the second Pod:

3.9.2 linux-netem QoS

Pod can use annotation below to config linux-netem type QoS: ovn.kubernetes.io/latency ovn.kubernetes.io/limit and

ovn.kubernetes.io/loss .

To install netem related modules on RHEL series operating systems, follow these instructions: yum install -y kernel-modules-

extra && modprobe sch_netem

ovn.kubernetes.io/latency : Set the Pod traffic delay to an integer value in ms.

ovn.kubernetes.io/jitter : Set the Pod traffic jitter to an integer value in ms.

ovn.kubernetes.io/limit : Set the maximum number of packets that the qdisc queue can hold, and takes an integer value, such

as 1000.

ovn.kubernetes.io/loss : Set packet loss probability, the value is float type, for example, the value is 20, then it is set 20%

packet loss probability.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

3.9.3 Comments

[4] 3.00-4.00 sec 104 MBytes 875 Mbits/sec 217 671 KBytes
[4] 4.00-5.00 sec 111 MBytes 935 Mbits/sec 175 772 KBytes
[4] 5.00-6.00 sec 100 MBytes 840 Mbits/sec 658 598 KBytes
[4] 6.00-7.00 sec 106 MBytes 890 Mbits/sec 742 668 KBytes
[4] 7.00-8.00 sec 102 MBytes 857 Mbits/sec 764 724 KBytes
[4] 8.00-9.00 sec 97.4 MBytes 817 Mbits/sec 1175 764 KBytes
[4] 9.00-10.00 sec 111 MBytes 934 Mbits/sec 1083 838 KBytes
- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 1010 MBytes 848 Mbits/sec 5119 sender
[4] 0.00-10.00 sec 1008 MBytes 846 Mbits/sec receiver

iperf Done.

kubectl annotate --overwrite pod perf-4n4gt -n ls1 ovn.kubernetes.io/ingress_rate=30

iperf3 -c 10.66.0.12
Connecting to host 10.66.0.12, port 5201
[4] local 10.66.0.14 port 52372 connected to 10.66.0.12 port 5201
[ID] Interval Transfer Bandwidth Retr Cwnd
[4] 0.00-1.00 sec 3.66 MBytes 30.7 Mbits/sec 2 76.1 KBytes
[4] 1.00-2.00 sec 3.43 MBytes 28.8 Mbits/sec 0 104 KBytes
[4] 2.00-3.00 sec 3.50 MBytes 29.4 Mbits/sec 0 126 KBytes
[4] 3.00-4.00 sec 3.50 MBytes 29.3 Mbits/sec 0 144 KBytes
[4] 4.00-5.00 sec 3.43 MBytes 28.8 Mbits/sec 0 160 KBytes
[4] 5.00-6.00 sec 3.43 MBytes 28.8 Mbits/sec 0 175 KBytes
[4] 6.00-7.00 sec 3.50 MBytes 29.3 Mbits/sec 0 212 KBytes
[4] 7.00-8.00 sec 3.68 MBytes 30.9 Mbits/sec 0 294 KBytes
[4] 8.00-9.00 sec 3.74 MBytes 31.4 Mbits/sec 0 398 KBytes
[4] 9.00-10.00 sec 3.80 MBytes 31.9 Mbits/sec 0 526 KBytes
- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 35.7 MBytes 29.9 Mbits/sec 2 sender
[4] 0.00-10.00 sec 34.5 MBytes 29.0 Mbits/sec receiver

iperf Done.

•

•

•

•

3.9.2 linux-netem QoS

- 48/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/hongzhen-ma
https://github.com/hongzhen-ma

3.10 Webhook

Using Webhook, you can verify CRD resources within Kube-OVN. Currently, Webhook mainly performs fixed IP address conflict

detection and Subnet CIDR conflict detection, and prompts errors when such conflicts happen.

Since Webhook intercepts all Subnet and Pod creation requests, you need to deploy Kube-OVN first and Webhook later.

3.10.1 Install Cert-Manager

Webhook deployment requires certificate, we use cert-manager to generate the associated certificate, we need to deploy cert-

manager before deploying Webhook.

You can use the following command to deploy cert-manager:

More cert-manager usage please refer to cert-manager document.

3.10.2 Install Webhook

Download Webhook yaml and install:

3.10.3 Verify Webhook Take Effect

Check the running Pod and get the Pod IP 10.16.0.15 :

Write yaml to create a Pod with the same IP:

When using the above yaml to create a fixed address Pod, it prompts an IP address conflict:

 PDF Slack Support

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.8.0/cert-manager.yaml

kubectl apply -f https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/yamls/webhook.yaml
deployment.apps/kube-ovn-webhook created
service/kube-ovn-webhook created
validatingwebhookconfiguration.admissionregistration.k8s.io/kube-ovn-webhook created
certificate.cert-manager.io/kube-ovn-webhook-serving-cert created
issuer.cert-manager.io/kube-ovn-webhook-selfsigned-issuer created

kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
static-7584848b74-fw9dm 1/1 Running 0 2d13h 10.16.0.15 kube-ovn-worker <none>

apiVersion: v1
kind: Pod
metadata:

annotations:
ovn.kubernetes.io/ip_address: 10.16.0.15
ovn.kubernetes.io/mac_address: 00:00:00:53:6B:B6

labels:
app: static

managedFields:
name: staticip-pod
namespace: default

spec:
containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: qatest

kubectl apply -f pod-static.yaml
Error from server (annotation ip address 10.16.0.15 is conflict with ip crd static-7584848b74-fw9dm.default 10.16.0.15): error when creating "pod-
static.yaml": admission webhook "pod-ip-validaing.kube-ovn.io" denied the request: annotation ip address 10.16.0.15 is conflict with ip crd static-7584848b74-
fw9dm.default 10.16.0.15

3.10 Webhook

- 49/324 - 2025 Kube-OVN Team

https://cert-manager.io/docs/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 30, 2025

May 24, 2022

GitHub

3.10.4 Comments

3.10.4 Comments

- 50/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

3.11 Traffic Mirror

The traffic mirroring feature allows packets to and from the container network to be copied to a specific NIC of the host.

Administrators or developers can listen to this NIC to get the complete container network traffic for further analysis, monitoring,

security auditing and other operations. It can also be integrated with traditional NPM for more fine-grained traffic visibility.

The traffic mirroring feature introduces some performance loss, with an additional CPU consumption of 5% to 10% depending on

CPU performance and traffic characteristics.

3.11.1 Global Traffic Mirroring Settings

The traffic mirroring is disabled by default, please modify the args of kube-ovn-cni DaemonSet to enable it:

--enable-mirror=true : Whether to enable traffic mirroring.

--mirror-iface=mirror0 : The name of the NIC that the traffic mirror is copied to. This NIC can be a physical NIC that already

exists on the host machine. At this point the NIC will be bridged into the br-int bridge and the mirrored traffic will go directly

to the underlying switch. If the NIC name does not exist, Kube-OVN will automatically create a virtual NIC with the same

name, through which the administrator or developer can access all traffic on the current node on the host. The default is

mirror0 .

Next, you can listen to the traffic on mirror0 with tcpdump or other traffic analysis tools.

3.11.2 Pod Level Mirroring Settings

If you only need to mirror some Pod traffic, you need to disable the global traffic mirroring and then add the ovn.kubernetes.io/

mirror annotation on a specific Pod to enable Pod-level traffic mirroring.

•

•

tcpdump -ni mirror0

apiVersion: v1
kind: Pod
metadata:

name: mirror-pod

3.11 Traffic Mirror

- 51/324 - 2025 Kube-OVN Team

3.11.3 Performance Test

Test on the same environment with the traffic mirroring switch on and off, respectively

1. Pod to Pod in the same Nodes

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

2. Pod to Pod in the different Nodes

ENABLE TRAFFIC MIRRORING

namespace: ls1
annotations:

ovn.kubernetes.io/mirror: "true"
spec:

containers:
- name: mirror-pod

image: docker.io/library/nginx:alpine

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 12.7 us 289 Mbits/sec 12.6 us (1.8%) 77.9 Mbits/sec

128 15.5 us 517 Mbits/sec 12.7 us (0%) 155 Mbits/sec

512 12.2 us 1.64 Gbits/sec 12.4 us (0%) 624 Mbits/sec

1k 13 us 2.96 Gbits/sec 11.4 us (0.53%) 1.22 Gbits/sec

4k 18 us 7.67 Gbits/sec 25.7 us (0.41%) 1.50 Gbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 11.9 us 324 Mbits/sec 12.2 us (0.22%) 102 Mbits/sec

128 10.5 us 582 Mbits/sec 9.5 us (0.21%) 198 Mbits/sec

512 11.6 us 1.84 Gbits/sec 9.32 us (0.091%) 827 Mbits/sec

1k 10.5 us 3.44 Gbits/sec 10 us (1.2%) 1.52 Gbits/sec

4k 16.7 us 8.52 Gbits/sec 18.2 us (1.3%) 2.42 Gbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 258 us 143 Mbits/sec 237 us (61%) 28.5 Mbits/sec

128 240 us 252 Mbits/sec 231 us (64%) 54.9 Mbits/sec

512 236 us 763 Mbits/sec 256 us (68%) 194 Mbits/sec

1k 242 us 969 Mbits/sec 225 us (62%) 449 Mbits/sec

4k 352 us 1.12 Gbits/sec 382 us (0.71%) 21.4 Mbits/sec

3.11.3 Performance Test

- 52/324 - 2025 Kube-OVN Team

DISABLE TRAFFIC MIRRORING

3. Node to Node

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

4. Pod to the Node where the Pod is located

ENABLE TRAFFIC MIRRORING

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 278 us 140 Mbits/sec 227 us (24%) 59.6 Mbits/sec

128 249 us 265 Mbits/sec 265 us (23%) 114 Mbits/sec

512 233 us 914 Mbits/sec 235 us (21%) 468 Mbits/sec

1k 238 us 1.14 Gbits/sec 240 us (15%) 891 Mbits/sec

4k 370 us 1.25 Gbits/sec 361 us (0.43%) 7.54 Mbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 205 us 162 Mbits/sec 183 us (11%) 74.2 Mbits/sec

128 222 us 280 Mbits/sec 206 us (6.3%) 155 Mbits/sec

512 220 us 1.04 Gbits/sec 177 us (20%) 503 Mbits/sec

1k 213 us 2.06 Gbits/sec 201 us (8.6%) 1.14 Gbits/sec

4k 280 us 5.01 Gbits/sec 315 us (37%) 1.20 Gbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 204 us 157 Mbits/sec 204 us (8.8%) 81.9 Mbits/sec

128 213 us 262 Mbits/sec 225 us (19%) 136 Mbits/sec

512 220 us 1.02 Gbits/sec 227 us (21%) 486 Mbits/sec

1k 217 us 1.79 Gbits/sec 218 us (29%) 845 Mbits/sec

4k 275 us 5.27 Gbits/sec 336 us (34%) 1.21 Gbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 12.2 us 295 Mbits/sec 12.7 us (0.27%) 74.1 Mbits/sec

128 14.1 us 549 Mbits/sec 10.6 us (0.41%) 153 Mbits/sec

512 13.5 us 1.83 Gbits/sec 12.7 us (0.23%) 586 Mbits/sec

1k 12 us 2.69 Gbits/sec 13 us (1%) 1.16 Gbits/sec

4k 18.9 us 4.51 Gbits/sec 21.8 us (0.42%) 1.81 Gbits/sec

3.11.3 Performance Test

- 53/324 - 2025 Kube-OVN Team

DISABLE TRAFFIC MIRRORING

5. Pod to the Node where the Pod is not located

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 10.4 us 335 Mbits/sec 12.2 us (0.75%) 95.4 Mbits/sec

128 12.1 us 561 Mbits/sec 11.3 us (0.25%) 194 Mbits/sec

512 11.6 us 1.87 Gbits/sec 10.7 us (0.66%) 745 Mbits/sec

1k 12.7 us 3.12 Gbits/sec 10.9 us (1.2%) 1.46 Gbits/sec

4k 16.5 us 8.23 Gbits/sec 17.9 us (1.5%) 2.51 Gbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 234 us 153 Mbits/sec 232 us (63%) 29.4 Mbits/sec

128 237 us 261 Mbits/sec 238 us (49%) 76.1 Mbits/sec

512 231 us 701 Mbits/sec 238 us (57%) 279 Mbits/sec

1k 256 us 1.05 Gbits/sec 228 us (56%) 524 Mbits/sec

4k 330 us 1.08 Gbits/sec 359 us (1.5%) 35.7 Mbits/sec

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 283 us 141 Mbits/sec 230 us (26%) 55.8 Mbits/sec

128 234 us 255 Mbits/sec 234 us (25%) 113 Mbits/sec

512 246 us 760 Mbits/sec 234 us (22%) 458 Mbits/sec

1k 268 us 1.23 Gbits/sec 242 us (20%) 879 Mbits/sec

4k 326 us 1.20 Gbits/sec 369 us (0.5%) 7.87 Mbits/sec

3.11.3 Performance Test

- 54/324 - 2025 Kube-OVN Team

6. Pod to the cluster ip service

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

7. Host to the Node port service where the Pod is not located on the target Node

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 237 us 133 Mbits/sec 213 us (65%) 25.5 Mbits/sec

128 232 us 271 Mbits/sec 222 us (62%) 54.8 Mbits/sec

512 266 us 800 Mbits/sec 234 us (60%) 232 Mbits/sec

1k 248 us 986 Mbits/sec 239 us (50%) 511 Mbits/sec

4k 314 us 1.03 Gbits/sec 367 us (0.6%) 13.2 Mbits/sec

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 14305.17 0.87ms 1.48ms 24.46ms

100 29082.07 3.87ms 4.35ms 102.85ms

Size TCP Latency TCP

Bandwidth

UDP Latency UDP Lost

Rate

UDP

Bandwidth

64 241 us 145 Mbits/sec 225 us (19%) 60.2 Mbits/sec

128 245 us 261 Mbits/sec 212 us (15%) 123 Mbits/sec

512 252 us 821 Mbits/sec 219 us (14%) 499 Mbits/sec

1k 253 us 1.08 Gbits/sec 242 us (16%) 852 Mbits/sec

4k 320 us 1.32 Gbits/sec 360 us (0.47%) 6.70 Mbits/sec

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 13634.07 0.96ms 1.72ms 30.07ms

100 30215.23 3.59ms 3.20ms 77.56ms

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 14802.73 0.88ms 1.66ms 31.49ms

100 29809.58 3.78ms 4.12ms 105.34ms

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 14273.33 0.90ms 1.60ms 37.16ms

100 30757.81 3.62ms 3.41ms 59.78ms

3.11.3 Performance Test

- 55/324 - 2025 Kube-OVN Team

8. Host to the Node port service where the Pod is located on the target Node

ENABLE TRAFFIC MIRRORING

DISABLE TRAFFIC MIRRORING

 PDF Slack Support

November 8, 2023

May 24, 2022

GitHub

3.11.4 Comments

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 15402.39 802.50us 1.42ms 30.91ms

100 29424.66 4.05ms 4.31ms 90.60ms

TCP-Conn-Number QPS Avg-Resp-Time Stdev-Resp-Time Max-Resp-Time

10 14649.21 0.91ms 1.72ms 43.92ms

100 32143.61 3.66ms 3.76ms 67.02ms

3.11.4 Comments

- 56/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/hongzhen-ma
https://github.com/hongzhen-ma
https://github.com/oilbeater
https://github.com/oilbeater

3.12 NetworkPolicy Logging

NetworkPolicy is a interface provided by Kubernetes and implemented by Kube-OVN through OVN's ACLs. With NetworkPolicy, if

the networks are down, it is difficult to determine whether it is caused by a network failure or a NetworkPolicy rule problem.

Kube-OVN provides NetworkPolicy logging to help administrators quickly locate whether a NetworkPolicy drop rule has been hit,

and to record the illegal accesses.

Once NetworkPolicy logging is turned on, logs need to be printed for every packet that hits a Drop rule, which introduces

additional performance overhead. Under a malicious attack, a large number of logs in a short period of time may exhaust the

CPU. We recommend turning off logging by default in production environments and dynamically turning it on when you need to

troubleshoot problems.

3.12.1 Enable NetworkPolicy Logging

Add the annotation ovn.kubernetes.io/enable_log to the NetworkPolicy where logging needs to be enabled, as follows:

Next, you can observe the log of dropped packets in /var/log/ovn/ovn-controller.log on the host of the corresponding Pod:

3.12.2 Other NetworkPolicy Logging

By default, after setting the "ovn.kubernetes.io/enable_log" annotation, only logs matching the drop ACL rule can be printed. If

you want to view logs matching other ACL rules, it is not supported.

Starting from Kube-OVN v1.13.0, a new annotation "ovn.kubernetes.io/log_acl_actions" is added to support logging that matches

other ACL rules. The value of the annotation needs to be set to "allow".

Add annotation ovn.kubernetes.io/log_acl_actions to NetworkPolicy, as shown below:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default-deny-ingress
namespace: kube-system
annotations:

ovn.kubernetes.io/enable_log: "true"
spec:

podSelector: {}
policyTypes:
- Ingress

tail -f /var/log/ovn/ovn-controller.log
2022-07-20T05:55:03.229Z|00394|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.10,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=54343,tp_dst=53
2022-07-20T05:55:06.229Z|00395|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.9,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=44187,tp_dst=53
2022-07-20T05:55:08.230Z|00396|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.10,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=54274,tp_dst=53
2022-07-20T05:55:11.231Z|00397|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.9,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=32778,tp_dst=53
2022-07-20T05:55:11.231Z|00398|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.9,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=34188,tp_dst=53
2022-07-20T05:55:13.231Z|00399|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport: udp,vlan_tci=0x0000,dl_src=00:
00:00:21:b7:d1,dl_dst=00:00:00:8d:0b:86,nw_src=10.16.0.10,nw_dst=10.16.0.7,nw_tos=0,nw_ecn=0,nw_ttl=63,tp_src=43290,tp_dst=53
2022-07-20T05:55:22.096Z|00400|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport:
icmp,vlan_tci=0x0000,dl_src=00:00:00:6c:42:91,dl_dst=00:00:00:a5:d7:63,nw_src=10.16.0.9,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2022-07-20T05:55:22.097Z|00401|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport:
icmp,vlan_tci=0x0000,dl_src=00:00:00:6c:42:91,dl_dst=00:00:00:a5:d7:63,nw_src=10.16.0.9,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2022-07-20T05:55:22.098Z|00402|acl_log(ovn_pinctrl0)|INFO|name="<unnamed>", verdict=drop, severity=warning, direction=to-lport:
icmp,vlan_tci=0x0000,dl_src=00:00:00:6c:42:91,dl_dst=00:00:00:a5:d7:63,nw_src=10.16.0.9,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: default-deny-ingress
namespace: kube-system
annotations:

ovn.kubernetes.io/enable_log: "true"
ovn.kubernetes.io/log_acl_actions: "allow"

spec:
podSelector: {}
policyTypes:
- Ingress

3.12 NetworkPolicy Logging

- 57/324 - 2025 Kube-OVN Team

Access the test pod and check /var/log/ovn/ovn-controller.log of the host where the corresponding Pod is located. You can see the

Allow ACL Rule log

3.12.3 Disable NetworkPolicy Logging

Set annotation ovn.kubernetes.io/enable_log in the corresponding NetworkPolicy to false to disable NetworkPolicy logging:

3.12.4 AdminNetworkPolicy and BaselineAdminNetworkPolicy Logging

Starting from v1.13.0, Kube-OVN supports the AdminNetworkPolicy and BaselineAdminNetworkPolicy functions. For an

introduction to AdminNetworkPolicy and BaselineAdminNetworkPolicy, see AdminNetworkPolicy.

For cluster network policies, you can also print logs that match ACL action rules by setting the "ovn.kubernetes.io/

log_acl_actions" annotation. The annotation's value can be a combination of one or more of "allow,drop,pass".

Note that the "ovn.kubernetes.io/enable_log" annotation is only used when printing network policy logs. When printing cluster

network policy logs, you do not need to set this annotation. You only need to set the "ovn.kubernetes.io/log_acl_actions"

annotation.

 PDF Slack Support

August 16, 2024

July 20, 2022

GitHub

3.12.5 Comments

2024-08-14T09:27:49.590Z|00004|acl_log(ovn_pinctrl0)|INFO|name="np/test.default/ingress/IPv4/0", verdict=allow, severity=info, direction=to-lport:
icmp,vlan_tci=0x0000,dl_src=96:7b:b 0:2f:a0:1a,dl_dst=a6:e5:1b:c2:1b:f8,nw_src=10.16.0.7,nw_dst=10.
16.0.12,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0

kubectl annotate networkpolicy -n kube-system default-deny-ingress ovn.kubernetes.io/enable_log=false --overwrite

3.12.3 Disable NetworkPolicy Logging

- 58/324 - 2025 Kube-OVN Team

https://network-policy-api.sigs.k8s.io/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

3.13 LoadBalancer Type Service

Kube-OVN supports the implementation of VPC and VPC gateway. For specific configurations, please refer to the VPC

configuration.

Due to the complexity of using VPC gateways, the implementation based on VPC gateways has been simplified. It supports

creating LoadBalancer type Services in the default VPC, allowing access to Services in the default VPC through LoadBalancerIP.

First, make sure the following conditions are met in the environment:

Install multus-cni and macvlan cni .

LoadBalancer Service support relies on simplified implementation of VPC gateway code, still utilizing the vpc-nat-gw image and

depending on macvlan for multi-interface functionality support.

Currently, it only supports configuration in the default VPC. Support for LoadBalancers in custom VPCs can be referred to in the

VPC configuration.

3.13.1 Steps to Configure Default VPC LoadBalancer Service

Enable Feature Flag

Modify the deployment kube-ovn-controller under the kube-system namespace and add the parameter --enable-lb-svc=true to

the args section to enable the feature (by default it's set to false).

Create NetworkAttachmentDefinition CRD Resource

Refer to the following YAML and create the net-attach-def resource:

By default, the physical NIC eth0 is used to implement the multi-interface functionality. If another physical NIC is needed,

modify the master value to specify the name of the desired physical NIC.

Create Subnet

The created Subnet is used to allocate LoadBalancerIP for the LoadBalancer Service, which should normally be accessible from

outside the cluster. An Underlay Subnet can be configured for address allocation.

Refer to the following YAML to create a new subnet:

1.

2.

3.

containers:
- args:

- /kube-ovn/start-controller.sh
- --default-cidr=10.16.0.0/16
- --default-gateway=10.16.0.1
- --default-gateway-check=true
- --enable-lb-svc=true // parameter is set to true

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: lb-svc-attachment
namespace: kube-system

spec:
config: '{

"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth0", //Physical network card, configure according to the actual situation
"mode": "bridge"

}'

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: attach-subnet
spec:

protocol: IPv4
provider:

lb-svc-attachment.kube-system //The provider format is fixed and consists of the Name.Namespace of the net-attach-def resource created in the
previous step

3.13 LoadBalancer Type Service

- 59/324 - 2025 Kube-OVN Team

In the provider parameter of the Subnet, ovn or .ovn suffix is used to indicate that the subnet is managed by Kube-OVN and

requires corresponding logical switch records to be created.

If provider is neither ovn nor ends with .ovn , Kube-OVN only provides the IPAM functionality to record IP address allocation

without handling business logic for the subnet.

Create LoadBalancer Service

Refer to the following YAML to create a LoadBalancer Service:

In the yaml, the annotation ovn.kubernetes.io/attachmentprovider is required, and its value is composed of the Name.Namespace

of the net-attach-def resource created in the first step. This annotation is used to find the net-attach-def resources when

creating Pods.

The subnet used for multi-interface address allocation can be specified through an annotation. The annotation key format is net-

attach-def resource's Name.Namespace.kubernetes.io/logical_switch . This configuration is optional and if LoadBalancerIP address

is not specified, addresses will be dynamically allocated from this subnet and filled into the LoadBalancerIP field.

If a static LoadBalancerIP address is required, the spec.loadBalancerIP field can be configured. The address must be within the

specified subnet's address range.

After creating the Service using the YAML, you can see the Pod startup information in the same namespace as the Service:

When specifying the service.spec.loadBalancerIP parameter, it will be assigned to the service's external IP field. If not specified,

the parameter will be assigned a random value.

View the YAML output of the test Pod to see the assigned multi-interface addresses:

cidrBlock: 172.18.0.0/16
gateway: 172.18.0.1
excludeIps:
- 172.18.0.0..172.18.0.10

apiVersion: v1
kind: Service
metadata:

annotations:
lb-svc-attachment.kube-system.kubernetes.io/logical_switch: attach-subnet #Optional
ovn.kubernetes.io/attachmentprovider: lb-svc-attachment.kube-system #Required

labels:
app: dynamic

name: test-service
namespace: default

spec:
loadBalancerIP: 172.18.0.18 #Optional
ports:

- name: test
protocol: TCP
port: 80
targetPort: 80

selector:
app: dynamic

sessionAffinity: None
type: LoadBalancer

kubectl get pod
NAME READY STATUS RESTARTS AGE
lb-svc-test-service-6869d98dd8-cjvll 1/1 Running 0 107m
kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
test-service LoadBalancer 10.109.201.193 172.18.0.18 80:30056/TCP 107m

kubectl get pod -o yaml lb-svc-test-service-6869d98dd8-cjvll
apiVersion: v1
kind: Pod
metadata:

annotations:
k8s.v1.cni.cncf.io/network-status: |-

[{
"name": "kube-ovn",
"ips": [

"10.16.0.2"
],
"default": true,
"dns": {}

},{
"name": "default/test-service",

3.13.1 Steps to Configure Default VPC LoadBalancer Service

- 60/324 - 2025 Kube-OVN Team

Check the service information:

3.13.2 Testing LoadBalancerIP access

Refer to the following YAML to create a test Pod that serves as the Endpoints for the Service:

"interface": "net1",
"mac": "ba:85:f7:02:9f:42",
"dns": {}

}]
k8s.v1.cni.cncf.io/networks: default/test-service
k8s.v1.cni.cncf.io/networks-status: |-

[{
"name": "kube-ovn",
"ips": [

"10.16.0.2"
],
"default": true,
"dns": {}

},{
"name": "default/test-service",
"interface": "net1",
"mac": "ba:85:f7:02:9f:42",
"dns": {}

}]
ovn.kubernetes.io/allocated: "true"
ovn.kubernetes.io/cidr: 10.16.0.0/16
ovn.kubernetes.io/gateway: 10.16.0.1
ovn.kubernetes.io/ip_address: 10.16.0.2
ovn.kubernetes.io/logical_router: ovn-cluster
ovn.kubernetes.io/logical_switch: ovn-default
ovn.kubernetes.io/mac_address: 00:00:00:45:F4:29
ovn.kubernetes.io/pod_nic_type: veth-pair
ovn.kubernetes.io/routed: "true"
test-service.default.kubernetes.io/allocated: "true"
test-service.default.kubernetes.io/cidr: 172.18.0.0/16
test-service.default.kubernetes.io/gateway: 172.18.0.1
test-service.default.kubernetes.io/ip_address: 172.18.0.18
test-service.default.kubernetes.io/logical_switch: attach-subnet
test-service.default.kubernetes.io/mac_address: 00:00:00:AF:AA:BF
test-service.default.kubernetes.io/pod_nic_type: veth-pair

kubectl get svc -o yaml test-service
apiVersion: v1
kind: Service
metadata:

annotations:
kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"v1","kind":"Service","metadata":{"annotations":{"test-service.default.kubernetes.io/logical_switch":"attach-subnet"},"labels ":
{"app":"dynamic"},"name":"test-service","namespace":"default"},"spec":{"ports":[{"name":"test", "port":80,"protocol":"TCP","targetPort":80}],"selector":
{"app":"dynamic"},"sessionAffinity":"None","type":"LoadBalancer "}}

ovn.kubernetes.io/vpc:ovn-cluster
test-service.default.kubernetes.io/logical_switch: attach-subnet

creationTimestamp: "2022-06-15T09:01:58Z"
labels:

app: dynamic
name: test-service
namespace: default
resourceVersion: "38485"
uid: 161edee1-7f6e-40f5-9e09-5a52c44267d0

spec:
allocateLoadBalancerNodePorts: true
clusterIP: 10.109.201.193
clusterIPs:
- 10.109.201.193
externalTrafficPolicy: Cluster
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: test

nodePort: 30056
port: 80
protocol: TCP
targetPort: 80

selector:
app: dynamic

sessionAffinity: None
type: LoadBalancer

status:
loadBalancer:

ingress:
- ip: 172.18.0.18

apiVersion: apps/v1
kind: Deployment
metadata:

3.13.2 Testing LoadBalancerIP access

- 61/324 - 2025 Kube-OVN Team

Under normal circumstances, the provided subnet addresses should be accessible from outside the cluster. To verify, access the

Service's LoadBalancerIP:Port from within the cluster and check if the access is successful.

Enter the Pod created by the Service and check the network information:

labels:
app: dynamic

name: dynamic
namespace: default

spec:
replicas: 2
selector:

matchLabels:
app: dynamic

strategy:
rollingUpdate:

maxSurge: 25%
maxUnavailable: 25%

type: RollingUpdate
template:

metadata:
creationTimestamp: null
labels:

app: dynamic
spec:

containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: nginx

dnsPolicy: ClusterFirst
restartPolicy: Always

curl 172.18.0.11:80
<html>
<head>

<title>Hello World!</title>
<link href='//fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<style>
body {

background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;

}
#logo {

margin-bottom: 40px;
}
</style>

</head>
<body>

<h1>Hello World!</h1>
<h3>Links found</h3>

<h3>I am on dynamic-7d8d7874f5-hsgc4</h3>
<h3>Cookie =</h3>

KUBERNETES listening in 443 available at tcp://10.96.0.1:443

<h3>my name is hanhouchao!</h3>

<h3> RequestURI='/'</h3>
</body>
</html>

ip a
4: net1@if62: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

link/ether ba:85:f7:02:9f:42 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 172.18.0.18/16 scope global net1

valid_lft forever preferred_lft forever
inet6 fe80::b885:f7ff:fe02:9f42/64 scope link

valid_lft forever preferred_lft forever
36: eth0@if37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UP group default

link/ether 00:00:00:45:f4:29 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.16.0.2/16 brd 10.16.255.255 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:fe45:f429/64 scope link

valid_lft forever preferred_lft forever

ip rule
0: from all lookup local
32764: from all iif eth0 lookup 100
32765: from all iif net1 lookup 100
32766: from all lookup main
32767: from all lookup default

ip route show table 100
default via 172.18.0.1 dev net1
10.109.201.193 via 10.16.0.1 dev eth0
172.18.0.0/16 dev net1 scope link

iptables -t nat -L -n -v
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

0 0 DNAT tcp -- * * 0.0.0.0/0 172.18.0.18 tcp dpt:80 to:10.109.201.193:80

3.13.2 Testing LoadBalancerIP access

- 62/324 - 2025 Kube-OVN Team

Configure the nodeSelector for the LB Service Pod

You can specify the node where the LoadBalancer service gateway Pod is deployed by adjusting the nodeSelector in the ovn-vpc-

nat-config ConfigMap.

 PDF Slack Support

July 30, 2025

August 18, 2023

GitHub

3.13.3 Comments

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

0 0 MASQUERADE all -- * * 0.0.0.0/0 10.109.201.193

apiVersion: v1
data:

image: docker.io/kubeovn/vpc-nat-gateway:v1.14.0
nodeSelector: |

kubernetes.io/hostname: kube-ovn-control-plane
kubernetes.io/os: linux

kind: ConfigMap
metadata:

name: ovn-vpc-nat-config
namespace: kube-system

3.13.3 Comments

- 63/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/loan75
https://github.com/loan75

3.14 Monitor and Dashboard

Kube-OVN can export network control plane information and network data plane quality information metrics to the external in

formats supported by Prometheus.

We use the CRD provided by kube-prometheus to define the corresponding Prometheus monitoring rules. For all monitoring

metrics supported by Kube-OVN, please refer to Kube-OVN Monitoring Metrics.

If you are using native Prometheus, please refer to Configuring Native Prometheus for configuration.

3.14.1 Install Prometheus Monitor

Kube-OVN uses Prometheus Monitor CRD to manage the monitoring output.

The default interval for Prometheus pull is 15s, if you need to adjust it, modify the interval value in yaml.

3.14.2 Import Grafana Dashboard

Kube-OVN provides a predefined Grafana Dashboard to display control plane and data plane related metrics.

Download the corresponding Dashboard template:

Import these templates into Grafana and set the data source to the corresponding Prometheus to see the following Dashboards.

kube-ovn-controller dashboard:

network quality related monitoring metrics
kubectl apply -f https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/pinger-monitor.yaml
kube-ovn-controller metrics
kubectl apply -f https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/controller-monitor.yaml
kube-ovn-cni metrics
kubectl apply -f https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/cni-monitor.yaml
ovn metrics
kubectl apply -f https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/ovn-monitor.yaml

network quality related monitoring dashboard
wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/pinger-grafana.json
kube-ovn-controller dashboard
wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/controller-grafana.json
kube-ovn-cni dashboard
wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/cni-grafana.json
ovn dashboard
wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/ovn-grafana.json
ovs dashboard
wget https://raw.githubusercontent.com/kubeovn/kube-ovn/master/dist/monitoring/ovs-grafana.json

3.14 Monitor and Dashboard

- 64/324 - 2025 Kube-OVN Team

https://github.com/coreos/kube-prometheus

kube-ovn-pinger dashboard:

3.14.2 Import Grafana Dashboard

- 65/324 - 2025 Kube-OVN Team

kube-ovn-cni dashboard:

 PDF Slack Support

3.14.2 Import Grafana Dashboard

- 66/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

September 6, 2022

May 23, 2022

GitHub

3.14.3 Comments

3.14.3 Comments

- 67/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

3.15 Config Native Prometheus

Kube-OVN provides rich monitoring data for OVN/OVS health status checks and connectivity checks of container and host

networks, and Kube-OVN is configured with ServiceMonitor for Prometheus to dynamically obtain monitoring metrics.

In some cases, where only Prometheus Server is installed and no other components are installed, you can dynamically obtain

monitoring data for the cluster environment by modifying the configuration of Prometheus.

3.15.1 Config Prometheus

The following configuration documentation, referenced from Prometheus Service Discovery.

Permission Configuration

Prometheus is deployed in the cluster and needs to access the k8s apiserver to query the monitoring data of the containers.

Refer to the following yaml to configure the permissions required by Prometheus:

Prometheus ConfigMap

The startup of Prometheus relies on the configuration file prometheus.yml, the contents of which can be configured in ConfigMap

and dynamically mounted to the Pod.

Create the ConfigMap file used by Prometheus by referring to the following yaml:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: prometheus
rules:
- apiGroups: [""]

resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]

- apiGroups:
- extensions
resources:
- ingresses
verbs: ["get", "list", "watch"]

- nonResourceURLs: ["/metrics"]
verbs: ["get"]

apiVersion: v1
kind: ServiceAccount
metadata:

name: prometheus
namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: prometheus
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus

subjects:
- kind: ServiceAccount

name: prometheus
namespace: default

apiVersion: v1
kind: ConfigMap
metadata:

name: prometheus-config
data:

prometheus.yml: |-
global:

scrape_interval: 15s
evaluation_interval: 15s

scrape_configs:

3.15 Config Native Prometheus

- 68/324 - 2025 Kube-OVN Team

https://yunlzheng.gitbook.io/prometheus-book/part-iii-prometheus-shi-zhan/readmd/service-discovery-with-kubernetes

Prometheus provides role-based querying of Kubernetes resource monitoring operations, which can be configured in the official

documentation kubernetes_sd_config.

Deploy Prometheus

Deploy Prometheus Server by referring to the following yaml:

- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']

- job_name: 'kubernetes-nodes'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node

- job_name: 'kubernetes-service'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: service

- job_name: 'kubernetes-endpoints'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: endpoints

- job_name: 'kubernetes-ingress'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: ingress

- job_name: 'kubernetes-pods'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: pod

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: prometheus

name: prometheus
namespace: default

spec:
replicas: 1
selector:

matchLabels:
app: prometheus

strategy:
rollingUpdate:

maxSurge: 25%
maxUnavailable: 25%

type: RollingUpdate
template:

metadata:
labels:

app: prometheus
spec:

serviceAccountName: prometheus
serviceAccount: prometheus
containers:
- image: docker.io/prom/prometheus:latest

imagePullPolicy: IfNotPresent
name: prometheus
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
ports:
- containerPort: 9090

protocol: TCP
volumeMounts:
- mountPath: "/etc/prometheus"

name: prometheus-config
volumes:
- name: prometheus-config

configMap:
name: prometheus-config

3.15.1 Config Prometheus

- 69/324 - 2025 Kube-OVN Team

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

Deploy Prometheus Service by referring to the following yaml:

After exposing Prometheus through NodePort, Prometheus can be accessed through the node address.

3.15.2 Prometheus Metrics Config

View information about Prometheus on the environment:

Access Prometheus via NodePort to see the data dynamically queried by Status/Service Discovery:

kind: Service
apiVersion: v1
metadata:

name: prometheus
namespace: default
labels:

name: prometheus
spec:

ports:
- name: test

protocol: TCP
port: 9090
targetPort: 9090

type: NodePort
selector:

app: prometheus
sessionAffinity: None

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.4.0.1 <none> 443/TCP 8d
prometheus NodePort 10.4.102.222 <none> 9090:32611/TCP 8d
kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
prometheus-7544b6b84d-v9m8s 1/1 Running 0 3d5h 10.3.0.7 192.168.137.219 <none> <none>
kubectl get endpoints -o wide
NAME ENDPOINTS AGE
kubernetes 192.168.136.228:6443,192.168.136.232:6443,192.168.137.219:6443 8d
prometheus 10.3.0.7:9090 8d

3.15.2 Prometheus Metrics Config

- 70/324 - 2025 Kube-OVN Team

You can see that you can currently query all the service data information on the cluster.

Configure to Query Specified Resource

The ConfigMap configuration above queries all resource data. If you only need resource data for a certain role, you can add filter

conditions.

Take Service as an example, modify the ConfigMap content to query only the service monitoring data:

- job_name: 'kubernetes-service'
tls_config:

ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:

- role: service
relabel_configs:

- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: "keep"
regex: "true"

- action: labelmap
regex: __meta_kubernetes_service_label_(.+)

- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace

3.15.2 Prometheus Metrics Config

- 71/324 - 2025 Kube-OVN Team

Check the Kube-OVN Service in kube-system Namespace:

Add annotation prometheus.io/scrape="true" to Service:

Check the configured Service information:

Looking at the Prometheus Status Targets information, you can only see the Services with annotation:

- source_labels: [__meta_kubernetes_service_name]
target_label: kubernetes_service_name

- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: "(.+)"

kubectl get svc -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.4.0.10 <none> 53/UDP,53/TCP,9153/TCP 13d
kube-ovn-cni ClusterIP 10.4.228.60 <none> 10665/TCP 13d
kube-ovn-controller ClusterIP 10.4.172.213 <none> 10660/TCP 13d
kube-ovn-monitor ClusterIP 10.4.242.9 <none> 10661/TCP 13d
kube-ovn-pinger ClusterIP 10.4.122.52 <none> 8080/TCP 13d
ovn-nb ClusterIP 10.4.80.213 <none> 6641/TCP 13d
ovn-northd ClusterIP 10.4.126.234 <none> 6643/TCP 13d
ovn-sb ClusterIP 10.4.216.249 <none> 6642/TCP 13d

kubectl annotate svc -n kube-system kube-ovn-cni prometheus.io/scrape=true
service/kube-ovn-cni annotated
kubectl annotate svc -n kube-system kube-ovn-controller prometheus.io/scrape=true
service/kube-ovn-controller annotated
kubectl annotate svc -n kube-system kube-ovn-monitor prometheus.io/scrape=true
service/kube-ovn-monitor annotated
kubectl annotate svc -n kube-system kube-ovn-pinger prometheus.io/scrape=true
service/kube-ovn-pinger annotated

kubectl get svc -o yaml -n kube-system kube-ovn-controller
apiVersion: v1
kind: Service
metadata:

annotations:
helm.sh/chart-version: v3.10.0-alpha.55
helm.sh/original-name: kube-ovn-controller
ovn.kubernetes.io/vpc: ovn-cluster
prometheus.io/scrape: "true" // added annotation

labels:
app: kube-ovn-controller

name: kube-ovn-controller
namespace: kube-system

spec:
clusterIP: 10.4.172.213
clusterIPs:
- 10.4.172.213
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: metrics

port: 10660
protocol: TCP
targetPort: 10660

selector:
app: kube-ovn-controller

sessionAffinity: None
type: ClusterIP

status:
loadBalancer: {}

3.15.2 Prometheus Metrics Config

- 72/324 - 2025 Kube-OVN Team

For more information about adding filter parameters to relabel, please check Prometheus-Relabel.

 PDF Slack Support

July 30, 2025

August 23, 2022

GitHub

3.15.3 Comments

3.15.3 Comments

- 73/324 - 2025 Kube-OVN Team

https://godleon.github.io/blog/Prometheus/Prometheus-Relabel/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

4. KubeVirt

4.1 Fixed VM IP

In container environments, container IP addresses are typically dynamically assigned and may change after container restarts.

However, VM users prefer their VM's IP address to be fixed for subsequent management and operations.

However, most common CNIs have the following limitations:

Unable to bind IP addresses to the VM lifecycle: The VM's IP address changes after VM restarts or shutdowns.

IP addresses are bound to Nodes: When a VM migrates to a new node, the previous IP cannot be reused.

Unable to support IP address configuration: Users cannot specify the VM's IP address.

Therefore, the masquerade network mode of KubeVirt is often used. It forwards the VM's traffic to the host's network interface via

iptables to achieve a fixed VM IP. However, compared to the bridge mode, masquerade has the following issues:

Inconsistent Pod and VM IPs: This increases management complexity. After restarts and live migrations, Pod IPs change,

making the external address still not fixed.

Performance: masquerade uses iptables for traffic forwarding, resulting in lower performance compared to the bridge mode.

Limited to Layer 3 Traffic Forwarding: Some Layer 2 network functionalities cannot be achieved.

Potential Traffic Interruptions: masquerade traffic is tracked by conntrack, which may cause traffic interruptions during live

migrations.

Kube-OVN supports binding IP addresses to the VM lifecycle under KubeVirt's bridge and managedTap network modes. The IP

address remains unchanged after operations such as VM restarts and live migrations. It also supports configuring fixed IP

addresses for VMs by adding annotations.

4.1.1 Binding IP and VM Lifecycle

For scenarios where users only want the VM's IP address to remain fixed during the VM's lifecycle without specifying the IP

address, users can create the VM as usual. Kube-OVN's internal IPAM automatically records the VM's lifecycle, ensuring the VM

uses the same IP address after restarts and migrations.

•

•

•

•

•

•

•

4. KubeVirt

- 74/324 - 2025 Kube-OVN Team

Below is an example using the bridge network mode: creating a VM, performing restarts and live migrations, and observing the

IP address changes.

Create VM

View VM Status

Restart VM

Live Migrate VM

You can observe that in bridge mode, the VM's IP address remains unchanged after restarts and live migrations.

4.1.2 Specifying IP Address

For scenarios where users need to specify the VM's IP address, they can add an annotation to the VM when creating it to assign

a specific IP address. Other usage methods are consistent with native KubeVirt.

1.

kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: testvm
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: testvm
 annotations:
 kubevirt.io/allow-pod-bridge-network-live-migration: "true"
 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 resources:
 requests:
 memory: 64M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: quay.io/kubevirt/cirros-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=
EOF

2.

kubectl get vmi testvm

3.

virtctl restart testvm

4.

virtctl migrate testvm

kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: testvm
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: testvm
 annotations:
 ovn.kubernetes.io/ip_address: 10.16.0.15
 kubevirt.io/allow-pod-bridge-network-live-migration: "true"

4.1.2 Specifying IP Address

- 75/324 - 2025 Kube-OVN Team

 PDF Slack Support

March 3, 2025

March 3, 2025

GitHub

4.1.3 Comments

 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 resources:
 requests:
 memory: 64M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: quay.io/kubevirt/cirros-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=
EOF

4.1.3 Comments

- 76/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

4.2 Dual-Stack Network

In KubeVirt's Bridge network mode, the DHCP service is provided by virt-launcher . However, KubeVirt currently only

implements DHCP for IPv4 single-stack, which prevents KubeVirt VMs in Bridge mode from dynamically obtaining IPv6

addresses through the RA (Router Advertisement) protocol. Although Kube-OVN provides DHCP and RA capabilities, these

features are ineffective because KubeVirt intercepts DHCP/RA requests in advance.

In versions of KubeVirt after 1.4.0, a new Network Binding Plugin introduces a Bridge-like network mode called managedTap . In

this mode, KubeVirt does not intercept DHCP requests. Therefore, by combining the new managedTap mode with Kube-OVN's

DHCP/RA capabilities, it is possible to automatically obtain dual-stack network addresses for VMs.

4.2.1 Usage

Enable DHCP and IPv6 RA features in the Subnet of Kube-OVN, as shown in the following YAML configuration:

Register the managedTap Network Binding Plugin in KubeVirt:

Create a virtual machine, specifying the use of the managedTap network type:

By following these steps, VMs can obtain their corresponding IPv4/IPv6 addresses through the DHCP and IPv6 RA protocols.

 PDF Slack Support

March 3, 2025

March 3, 2025

GitHub

1.

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: dual-stack-subnet
spec:

cidrBlock: "10.244.0.0/16,fd00:10:244::/64"
enableDHCP: true
enableIPv6RA: true

2.

kubectl patch kubevirts -n kubevirt kubevirt --type=json -p=\
'[{"op": "add", "path": "/spec/configuration/network", "value": {
 "binding": {
 "managedtap": {
 "domainAttachmentType": "managedTap"
 }
 }
}}]'

3.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:

name: dual-stack-vm
namespace: default

spec:
running: false
template:

spec:
domain:

devices:
interfaces:

- name: default
binding:

name: managedtap
networks:
- name: default

pod: {}

4.2 Dual-Stack Network

- 77/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

4.2.2 Comments

4.2.2 Comments

- 78/324 - 2025 Kube-OVN Team

4.3 Live Migration

In virtual machine usage scenarios, live migration allows a virtual machine to be moved from one node to another for operations

such as node maintenance, upgrades, and failover.

KubeVirt faces the following challenges during live migration:

KubeVirt does not support live migration of virtual machines using bridge network mode by default.

KubeVirt only handles memory and disk migration without specific optimizations for network migration.

If the virtual machine's IP changes during migration, it cannot achieve a seamless live migration.

If the network is interrupted during migration, it cannot achieve a seamless live migration.

Kube-OVN specifically addresses the above issues during the virtual machine migration process, allowing users to perform

network-transparent live migrations. Our tests show that network interruption time can be controlled within 0.5 seconds, and

TCP connections remain uninterrupted.

•

•

•

•

4.3 Live Migration

- 79/324 - 2025 Kube-OVN Team

4.3.1 Usage

Users only need to add the annotation kubevirt.io/allow-pod-bridge-network-live-migration: "true" in the VM Spec. Kube-OVN

will automatically handle network migration during the process.

Create VM

SSH into the Virtual Machine and Test Network Connectivity

Perform Migration in Another Terminal and Observe Virtual Machine Network Connectivity

It can be observed that during the VM live migration process, the SSH connection remains uninterrupted, and ping only

experiences packet loss in a few instances.

4.3.2 Live Migration Principles

During the live migration process, Kube-OVN implements techniques inspired by the Red Hat team's Live migration - Reducing

downtime with multi-chassis port bindings.

To ensure network consistency between the source and target virtual machines during migration, the same IP address exists on

the network for both the source and target VMs. This requires handling network conflicts and traffic confusion. The specific steps

are as follows: Here's the translation:

KubeVirt initiates the migration and creates the corresponding Pod on the target machine.

1.

kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: testvm
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: testvm
 annotations:
 kubevirt.io/allow-pod-bridge-network-live-migration: "true"
 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 resources:
 requests:
 memory: 64M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: quay.io/kubevirt/cirros-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=
EOF

2.

password: gocubsgo
virtctl ssh cirros@testvm
ping 8.8.8.8

3.

virtctl migrate testvm

1.

4.3.1 Usage

- 80/324 - 2025 Kube-OVN Team

https://www.openvswitch.org/support/ovscon2022/slides/Live-migration-with-OVN.pdf
https://www.openvswitch.org/support/ovscon2022/slides/Live-migration-with-OVN.pdf

Kube-OVN detects that the Pod is the target Pod for a live migration and reuses the network port information from the source Pod.

Kube-OVN sets up traffic replication, so network traffic will be copied to both the source Pod and the target Pod. This helps reduce

the interruption time caused by control plane switch during network migration. The network port of the target Pod is temporarily

disabled, so the target Pod will not actually receive the replicated traffic, avoiding traffic confusion.

1.

1.

4.3.2 Live Migration Principles

- 81/324 - 2025 Kube-OVN Team

KubeVirt synchronizes the VM memory.

KubeVirt completes the memory synchronization and deactivates the source Pod. At this point, the source Pod will not handle

network traffic.

1.

1.

4.3.2 Live Migration Principles

- 82/324 - 2025 Kube-OVN Team

KubeVirt activates the target Pod. At this point, libvirt sends a RARP to activate the network port of the target Pod, and the target

Pod starts processing traffic.

KubeVirt deletes the source Pod, completing the live migration. Kube-OVN listens for the migration completion event through the

Watch Migration CR and stops traffic replication after the migration is finished.

1.

1.

4.3.2 Live Migration Principles

- 83/324 - 2025 Kube-OVN Team

In this process, the network interruption mainly occurs between steps 5 and 6. The network interruption time primarily depends

on the time it takes for libvirt to send the RARP. Tests show that the network interruption time can be controlled within 0.5

seconds, and TCP connections will not experience interruptions due to the retry mechanism.

 PDF Slack Support

July 30, 2025

March 3, 2025

GitHub

4.3.3 Comments

4.3.3 Comments

- 84/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

4.4 DHCP

When using SR-IOV or DPDK type networks, KubeVirt's built-in DHCP does not work in this network mode. Kube-OVN can use

the DHCP capabilities of OVN to set DHCP options at the subnet level to help KubeVirt VMs of these network types to properly

use DHCP to obtain assigned IP addresses. Kube-OVN supports both DHCPv4 and DHCPv6.

The subnet DHCP is configured as follows:

enableDHCP : Whether to enable the DHCP function for the subnet.

dhcpV4Options , dhcpV6Options : This field directly exposes DHCP-related options within ovn-nb, please reade DHCP Options for

more detail. The default value is "lease_time=3600, router=$ipv4_gateway, server_id=169.254.0.254, server_mac=$random_mac" and

server_id=$random_mac .

enableIPv6RA : Whether to enable the route broadcast function of DHCPv6.

ipv6RAConfigs : This field directly exposes DHCP-related options within ovn-nb Logical_Router_Port, please read Logical Router

Port for more detail. The default value is address_mode=dhcpv6_stateful, max_interval=30, min_interval=5, send_periodic=true .

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

4.4.1 Comments

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: sn-dual
spec:

cidrBlock: "10.0.0.0/24,240e::a00/120"
default: false
disableGatewayCheck: true
disableInterConnection: false
excludeIps:

- 10.0.0.1
- 240e::a01

gateway: 10.0.0.1,240e::a01
gatewayNode: ''
gatewayType: distributed
natOutgoing: false
private: false
protocol: Dual
provider: ovn
vpc: vpc-test
enableDHCP: true
dhcpV4Options: "lease_time=3600,router=10.0.0.1,server_id=169.254.0.254,server_mac=00:00:00:2E:2F:B8"
dhcpV6Options: "server_id=00:00:00:2E:2F:C5"
enableIPv6RA: true
ipv6RAConfigs: "address_mode=dhcpv6_stateful,max_interval=30,min_interval=5,send_periodic=true"

•

•

•

•

4.4 DHCP

- 85/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man5/ovn-nb.5.html#DHCP_Options_TABLE
https://man7.org/linux/man-pages/man5/ovn-nb.5.html#Logical_Router_Port_TABLE
https://man7.org/linux/man-pages/man5/ovn-nb.5.html#Logical_Router_Port_TABLE
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5. VPC Network

5.1 Config VPC

Kube-OVN supports multi-tenant isolation level VPC networks. Different VPC networks are independent of each other and can be

configured separately with Subnet CIDRs, routing policies, security policies, outbound gateways, EIP, etc.

VPC is mainly used in scenarios where there requires strong isolation of multi-tenant networks and some Kubernetes networking

features conflict under multi-tenant networks. For example, node and pod access, NodePort functionality, network access-based

health checks, and DNS capabilities are not supported in multi-tenant network scenarios at this time. In order to facilitate

common Kubernetes usage scenarios, Kube-OVN has a special design for the default VPC where the Subnet under the VPC can

meet the Kubernetes specification. The custom VPC supports static routing, EIP and NAT gateways as described in this

document. Common isolation requirements can be achieved through network policies and Subnet ACLs under the default VPC, so

before using a custom VPC, please make sure whether you need VPC-level isolation and understand the limitations under the

custom VPC. For Underlay subnets, physical switches are responsible for data-plane forwarding, so VPCs cannot isolate Underlay

subnets.

5.1.1 Implementation Principle

In Kube-OVN, each VPC is mapped to a Logical Router in OVN. Multiple logical routers are independent network units, and each

logical router can be associated with its own Logical Switches, thereby having independent network ports and IP address spaces.

Traffic from different VPCs is distinguished and isolated by different Datapath IDs when traversing tunnels, and forwarding is

performed based on Datapath IDs. This ensures IP address space isolation, allowing the same IP addresses to be used in different

VPCs without conflicts. For tunnel encapsulation formats, refer to OVN Architecture Design Decisions.

5.1.2 Creating Custom VPCs

Create two VPCs:

5. VPC Network

- 86/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man5/ovn-nb.5.html#Logical_Router_TABLE
https://man7.org/linux/man-pages/man5/ovn-nb.5.html#Logical_Switch_TABLE
https://man7.org/linux/man-pages/man7/ovn-architecture.7.html#DESIGN_DECISIONS

namespaces : Limit which namespaces can use this VPC. If empty, all namespaces can use this VPC.

Create two Subnets, belonging to two different VPCs and having the same CIDR:

Create Pods under two separate Namespaces:

After running successfully, you can observe that the two Pod addresses belong to the same CIDR, but the two Pods cannot access

each other because they are running on different tenant VPCs.

Custom VPC Pod supports livenessProbe and readinessProbe

Since the Pods under the custom VPC do not communicate with the network of the node, the probe packets sent by the kubelet

cannot reach the Pods in the custom VPC. Kube-OVN uses TProxy to redirect the detection packets sent by kubelet to Pods in the

custom VPC to achieve this function.

The configuration method is as follows, add the parameter --enable-tproxy=true in DaemonSet kube-ovn-cni :

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: test-vpc-1
spec:

namespaces:
- ns1

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: test-vpc-2
spec:

namespaces:
- ns2

•

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: net1
spec:

vpc: test-vpc-1
cidrBlock: 10.0.1.0/24
protocol: IPv4
namespaces:

- ns1

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: net2
spec:

vpc: test-vpc-2
cidrBlock: 10.0.1.0/24
protocol: IPv4
namespaces:

- ns2

apiVersion: v1
kind: Pod
metadata:

namespace: ns1
name: vpc1-pod

spec:
containers:

- name: vpc1-pod
image: docker.io/library/nginx:alpine

apiVersion: v1
kind: Pod
metadata:

namespace: ns2
name: vpc2-pod

spec:
containers:

- name: vpc2-pod
image: docker.io/library/nginx:alpine

spec:
template:

spec:
containers:
- args:

- --enable-tproxy=true

5.1.2 Creating Custom VPCs

- 87/324 - 2025 Kube-OVN Team

Restrictions for this feature:

When Pods under different VPCs have the same IP under the same node, the detection function fails.

Currently, only tcpSocket and httpGet are supported.

5.1.3 Create VPC NAT Gateway

Subnets under custom VPCs do not support distributed gateways and centralized gateways under default VPCs.

Pod access to the external network within the VPC requires a VPC gateway, which bridges the physical and tenant networks and

provides floating IP, SNAT and DNAT capabilities.

The VPC gateway function relies on Multus-CNI function, please refer to multus-cni.

Configuring the External Network

This Subnet is used to manage the available external addresses and the address will be allocated to VPC NAT Gateway through

Macvlan, so please communicate with your network administrator to give you the available physical segment IPs.

The VPC gateway uses Macvlan for physical network configuration, and master of NetworkAttachmentDefinition should be the

NIC name of the corresponding physical network NIC.

name : External network name.

For macvlan mode, the nic will send packets directly through that node NIC, relying on the underlying network devices for L2/L3

level forwarding capabilities. You need to configure the corresponding gateway, Vlan and security policy in the underlying

network device in advance.

For OpenStack VM environments, you need to turn off PortSecurity on the corresponding network port.

For VMware vSwitch networks, MAC Address Changes , Forged Transmits and Promiscuous Mode Operation should be set to allow .

For Hyper-V virtualization, MAC Address Spoofing should be enabled in VM nic advanced features.

Public clouds, such as AWS, GCE, AliCloud, etc., do not support user-defined Mac, so they cannot support Macvlan mode network.

Due to the limitations of Macvlan itself, a Macvlan sub-interface cannot access the address of the parent interface, which means

that it is not possible to access the Pod through the network on the host machine where the VpcNATGateway Pod is located.

If the physical network card corresponds to a switch interface in Trunk mode, a sub-interface needs to be created on the network

card and provided to Macvlan for use.

1.

2.

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: ovn-vpc-external-network
spec:

protocol: IPv4
provider: ovn-vpc-external-network.kube-system
cidrBlock: 192.168.0.0/24
gateway: 192.168.0.1 # IP address of the physical gateway
excludeIps:
- 192.168.0.1..192.168.0.10

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: ovn-vpc-external-network
namespace: kube-system

spec:
config: '{

"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {

"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "ovn-vpc-external-network.kube-system"

}
}'

•

•

•

1.

2.

3.

4.

5.

6.

5.1.3 Create VPC NAT Gateway

- 88/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/quickstart.md

Enabling the VPC Gateway

The VPC gateway functionality can be enabled by configuring the ovn-vpc-nat-gw-config in the kube-system namespace. The

nodeSelector can be used to specify the node where the gateway is deployed:

image : The image used by the Gateway Pod.

enable-vpc-nat-gw : Controls whether the VPC Gateway feature is enabled.

Create VPC Gateway

vpc : The VPC to which this VpcNatGateway belongs.

subnet : A Subnet within the VPC, the VPC Gateway Pod will use lanIp to connect to the tenant network under that subnet.

lanIp : An unused IP within the subnet that the VPC Gateway Pod will eventually use. When configuring routing for a VPC, the

nextHopIP needs to be set to the lanIp of the current VpcNatGateway.

selector : The node selector for VpcNatGateway Pod has the same format as NodeSelector in Kubernetes.

externalSubnets : External network used by the VPC gateway, if not configured, ovn-vpc-external-network is used by default,

and only one external network is supported in the current version.

Other configurable parameters:

tolerations : Configure tolerance for the VPC gateway. For details, see Taints and Tolerations

affinity : Configure affinity for the Pod or node of the VPC gateway. For details, see Assigning Pods to Nodes

Things to note when using VPC-NAT-GW:

After the nat gw pod is created, the nic net1 arp is disabled and the physical gateway cannot be pinged. After creating the eip, the

arp will be automatically enabled and the ping to underlay gateway should be ok.

Create EIP

EIP allows for floating IP, SNAT, and DNAT operations after assigning an IP from an external network segment to a VPC gateway.

Randomly assign an address to the EIP:

kind: ConfigMap
apiVersion: v1
metadata:

name: ovn-vpc-nat-config
namespace: kube-system

data:
image: docker.io/kubeovn/vpc-nat-gateway:v1.14.4
nodeSelector: |

kubernetes.io/hostname: kube-ovn-control-plane

kind: ConfigMap
apiVersion: v1
metadata:

name: ovn-vpc-nat-gw-config
namespace: kube-system

data:
enable-vpc-nat-gw: 'true'

•

•

kind: VpcNatGateway
apiVersion: kubeovn.io/v1
metadata:

name: gw1
spec:

vpc: test-vpc-1
subnet: net1
lanIp: 10.0.1.254
selector:

- "kubernetes.io/hostname: kube-ovn-worker"
- "kubernetes.io/os: linux"

externalSubnets:
- ovn-vpc-external-network

•

•

•

•

•

•

•

1.

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

5.1.3 Create VPC NAT Gateway

- 89/324 - 2025 Kube-OVN Team

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-nodes-by-condition
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

Fixed EIP address assignment:

Specify the external network on which the EIP is located:

externalSubnet : The name of the external network on which the EIP is located. If not specified, it defaults to ovn-vpc-external-

network . If specified, it must be one of the externalSubnets of the VPC gateway.

Create DNAT Rules

Through the DNAT rules, external can access to an IP and port within a VPC through an EIP and port.

Create SNAT Rules

Through SNAT rules, when a Pod in the VPC accesses an external address, it will go through the corresponding EIP for SNAT.

Create Floating IP

Through floating IP rules, one IP in the VPC will be completely mapped to the EIP, and the external can access the IP in the VPC

through this EIP. When the IP in the VPC accesses the external address, it will be SNAT to this EIP

name: eip-random
spec:

natGwDp: gw1

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

name: eip-static
spec:

natGwDp: gw1
v4ip: 192.168.0.100

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

name: eip-random
spec:

natGwDp: gw1
externalSubnet: ovn-vpc-external-network

•

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

name: eipd01
spec:

natGwDp: gw1

kind: IptablesDnatRule
apiVersion: kubeovn.io/v1
metadata:

name: dnat01
spec:

eip: eipd01
externalPort: '8888'
internalIp: 10.0.1.10
internalPort: '80'
protocol: tcp

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

name: eips01
spec:

natGwDp: gw1

kind: IptablesSnatRule
apiVersion: kubeovn.io/v1
metadata:

name: snat01
spec:

eip: eips01
internalCIDR: 10.0.1.0/24

kind: IptablesEIP

5.1.3 Create VPC NAT Gateway

- 90/324 - 2025 Kube-OVN Team

5.1.4 Custom Routing

Within the custom VPC, users can customize the routing rules within the VPC and combine it with the gateway for more flexible

forwarding. Kube-OVN supports static routes and more flexible policy routes.

Static Routes

policy : Supports destination routing policyDst and source routing policySrc .

When there are overlapping routing rules, the rule with the longer CIDR mask has higher priority, and if the mask length is the

same, the destination route has a higher priority over the source route.

routeTable : You can store the route in specific table, default is main table. Associate with subnet please defer to Create

Custom Subnets

Policy Routes

Traffic matched by static routes can be controlled at a finer granularity by policy routing. Policy routing provides more precise

matching rules, priority control and more forwarding actions. This feature brings the OVN internal logical router policy function

directly to the outside world, for more information on its use, please refer to Logical Router Policy.

An example of policy routes:

5.1.5 Custom vpc-dns

Due to the isolation between custom VPCs and default VPC networks, Pods in VPCs cannot use the default coredns service for

domain name resolution. If you want to use coredns to resolve Service domain names within the custom VPC, you can use the

vpc-dns resource provided by Kube-OVN.

apiVersion: kubeovn.io/v1
metadata:

name: eipf01
spec:

natGwDp: gw1

kind: IptablesFIPRule
apiVersion: kubeovn.io/v1
metadata:

name: fip01
spec:

eip: eipf01
internalIp: 10.0.1.5

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: test-vpc-1
spec:

staticRoutes:
- cidr: 0.0.0.0/0

nextHopIP: 10.0.1.254
policy: policyDst

- cidr: 172.31.0.0/24
nextHopIP: 10.0.1.253
policy: policySrc
routeTable: "rtb1"

•

•

•

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: test-vpc-1
spec:

policyRoutes:
- action: drop

match: ip4.src==10.0.1.0/24 && ip4.dst==10.0.1.250
priority: 11

- action: reroute
match: ip4.src==10.0.1.0/24
nextHopIP: 10.0.1.252
priority: 10

5.1.4 Custom Routing

- 91/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man5/ovn-nb.5.html#Logical_Router_Policy_TABLE

Create an Additional Network

Modify the Provider of the ovn-default Logical Switch

Modify the provider of ovn-default to the provider ovn-nad.default.ovn configured above in nad:

Modify the vpc-dns ConfigMap

Create a ConfigMap in the kube-system namespace, configure the vpc-dns parameters to be used for the subsequent vpc-dns

feature activation:

enable-vpc-dns : (optional) true to enable the feature, false to disable the feature. Default true .

coredns-image : (optional): DNS deployment image. Default is the cluster coredns deployment version.

coredns-template : (optional): URL of the DNS deployment template. Default: yamls/coredns-template.yaml in the current version

repository.

coredns-vip : VIP providing LB service for coredns.

nad-name : Name of the configured network-attachment-definitions resource.

nad-provider : Name of the used provider.

k8s-service-host : (optional) IP used by coredns to access the k8s apiserver service.

k8s-service-port : (optional) Port used by coredns to access the k8s apiserver service.

Deploying VPC-DNS Dependent Resources

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: ovn-nad
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "ovn-nad.default.ovn"

}'

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: ovn-default
spec:

cidrBlock: 10.16.0.0/16
default: true
disableGatewayCheck: false
disableInterConnection: false
enableDHCP: false
enableIPv6RA: false
excludeIps:
- 10.16.0.1
gateway: 10.16.0.1
gatewayType: distributed
logicalGateway: false
natOutgoing: true
private: false
protocol: IPv4
provider: ovn-nad.default.ovn
vpc: ovn-cluster

apiVersion: v1
kind: ConfigMap
metadata:

name: vpc-dns-config
namespace: kube-system

data:
coredns-vip: 10.96.0.3
enable-vpc-dns: "true"
nad-name: ovn-nad
nad-provider: ovn-nad.default.ovn

•

•

•

•

•

•

•

•

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

5.1.5 Custom vpc-dns

- 92/324 - 2025 Kube-OVN Team

Deploy vpc-dns

vpc : The VPC name used to deploy the DNS component.

subnet : The subnet name used to deploy the DNS component.

View resource information:

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: system:vpc-dns
rules:

- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch

- apiGroups:
- discovery.k8s.io
resources:
- endpointslices
verbs:
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: vpc-dns
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:vpc-dns

subjects:
- kind: ServiceAccount

name: vpc-dns
namespace: kube-system

apiVersion: v1
kind: ServiceAccount
metadata:

name: vpc-dns
namespace: kube-system

apiVersion: v1
kind: ConfigMap
metadata:

name: vpc-dns-corefile
namespace: kube-system

data:
Corefile: |

.:53 {
errors
health {

lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {

pods insecure
fallthrough in-addr.arpa ip6.arpa

}
prometheus :9153
forward . /etc/resolv.conf {

prefer_udp
}
cache 30
loop
reload
loadbalance

}

kind: VpcDns
apiVersion: kubeovn.io/v1
metadata:

name: test-cjh1
spec:

vpc: cjh-vpc-1
subnet: cjh-subnet-1

•

•

5.1.5 Custom vpc-dns

- 93/324 - 2025 Kube-OVN Team

ACTIVE : if the custom vpc-dns is ready.

Restrictions

Only one custom DNS component will be deployed in one VPC;

When multiple VPC-DNS resources (i.e. different subnets in the same VPC) are configured in one VPC, only one VPC-DNS

resource with status true will be active, while the others will be false ;

When the true VPC-DNS is deleted, another false VPC-DNS will be deployed.

5.1.6 Default subnet selection for custom VPC

If the custom VPC is running multiple Subnets, you can specify the default Subnet for that VPC.

defaultSubnet : Name of the subnet that should be used by custom VPC as the default one.

Please note that it will annotate the VPC namespaces with just one logical switch using "ovn.kubernetes.io/logical_switch"

annotation. Any of the new Pods without "ovn.kubernetes.io/logical_switch" annotation will be added to the default Subnet.

 PDF Slack Support

July 14, 2025

May 24, 2022

GitHub

5.1.7 Comments

[root@hci-dev-mst-1 kubeovn]# kubectl get vpc-dns
NAME ACTIVE VPC SUBNET
test-cjh1 false cjh-vpc-1 cjh-subnet-1
test-cjh2 true cjh-vpc-1 cjh-subnet-2

•

•

•

•

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: test-vpc-1
spec:

namespaces:
- ns1
defaultSubnet: test

•

5.1.6 Default subnet selection for custom VPC

- 94/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5.2 VPC Egress Gateway

VPC Egress Gateway is used to control external network access for Pods within a VPC (including the default VPC) with a group

of static addresses and has the following features:

Achieves Active-Active high availability through ECMP, enabling horizontal throughput scaling

Implements fast failover (<1s) via BFD

Supports IPv6 and dual-stack

Enables granular routing control through NamespaceSelector and PodSelector

Allows flexible scheduling of Egress Gateway through NodeSelector

At the same time, VPC Egress Gateway has the following limitations:

Uses macvlan for underlying network connectivity, requiring Underlay support from the underlying network

In multi-instance Gateway mode, multiple Egress IPs are required

Currently, only supports SNAT; EIP and DNAT are not supported

Currently, recording source address translation relationships is not supported

5.2.1 Implementation Details

Each Egress Gateway consists of multiple Pods with multiple network interfaces. Each Pod has two network interfaces: one joins

the virtual network for communication within the VPC, and the other connects to the underlying physical network via Macvlan

for external network communication. Virtual network traffic ultimately accesses the external network through NAT within the

Egress Gateway instances.

Each Egress Gateway instance registers its address in the OVN routing table. When a Pod within the VPC needs to access the

external network, OVN uses source address hashing to forward traffic to multiple Egress Gateway instance addresses, achieving

load balancing. As the number of Egress Gateway instances increases, throughput can also scale horizontally.

•

•

•

•

•

•

•

•

•

5.2 VPC Egress Gateway

- 95/324 - 2025 Kube-OVN Team

OVN uses the BFD protocol to probe multiple Egress Gateway instances. When an Egress Gateway instance fails, OVN marks the

corresponding route as unavailable, enabling rapid failure detection and recovery.

5.2.1 Implementation Details

- 96/324 - 2025 Kube-OVN Team

5.2.2 Requirements

The VPC Egress Gateway is the same as the VPC NAT Gateway in that it requires Multus-CNI.

No ConfigMap needs to be configured to use VPC Egress Gateway.

5.2.3 Usage

Creating a Network Attachment Definition

The VPC Egress Gateway uses multiple NICs to access both the VPC and the external network, so you need to create a Network

Attachment Definition to connect to the external network. An example of using the macvlan plugin with IPAM provided by Kube-

OVN is shown below:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

name: eth1
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {

"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "eth1.default"

}
}'

5.2.2 Requirements

- 97/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/quickstart.md

You can create a Network Attachment Definition with any CNI plugin to access the corresponding network.

For details on how to use multi-nic, please refer to Manage Multiple Interface.

Creating a VPC Egress Gateway

Create a VPC Egress Gateway resource as shown in the example below:

The above resource creates a VPC Egress Gateway named gateway1 for VPC ovn-cluster under the default namespace, and all

Pods under the ovn-default subnet (10.16.0.0/16) within ovn-cluster VPC will access the external network via the macvlan1

subnet with SNAT applied.

After the creation is complete, check out the VPC Egress Gateway resource:

To view more informations:

To view the workload:

To view IP addresses, routes, and iptables rules in the Pod:

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: macvlan1
spec:

protocol: IPv4
provider: eth1.default
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
excludeIps:

- 172.17.0.0..172.17.0.10

apiVersion: kubeovn.io/v1
kind: VpcEgressGateway
metadata:

name: gateway1
namespace: default

spec:
vpc: ovn-cluster
replicas: 1
externalSubnet: macvlan1
policies:

- snat: true
subnets:

- ovn-default

$ kubectl get veg gateway1
NAME VPC REPLICAS BFD ENABLED EXTERNAL SUBNET PHASE READY AGE
gateway1 ovn-cluster 1 false macvlan1 Completed true 13s

kubectl get veg gateway1 -o wide
NAME VPC REPLICAS BFD ENABLED EXTERNAL SUBNET PHASE READY INTERNAL IPS EXTERNAL IPS WORKING NODES AGE
gateway1 ovn-cluster 1 false macvlan1 Completed true ["10.16.0.12"] ["172.17.0.11"] ["kube-ovn-worker"] 82s

$ kubectl get deployment -l ovn.kubernetes.io/vpc-egress-gateway=gateway1
NAME READY UP-TO-DATE AVAILABLE AGE
gateway1 1/1 1 1 4m40s

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway1 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
gateway1-b9f8b4448-76lhm 1/1 Running 0 4m48s 10.16.0.12 kube-ovn-worker <none> <none>

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: net1@if13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000

link/ether 62:d8:71:90:7b:86 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 172.17.0.11/16 brd 172.17.255.255 scope global net1

valid_lft forever preferred_lft forever
inet6 fe80::60d8:71ff:fe90:7b86/64 scope link

valid_lft forever preferred_lft forever
17: eth0@if18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UP group default

link/ether 36:7c:6b:c7:82:6b brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.16.0.12/16 brd 10.16.255.255 scope global eth0

valid_lft forever preferred_lft forever

5.2.3 Usage

- 98/324 - 2025 Kube-OVN Team

Capture packets in the Gateway Pod to verify network traffic:

Routing policies (static routes for custom VPCs) are automatically created on the OVN Logical Router:

If you need to enable load balancing, modify .spec.replicas as shown in the following example:

Enabling BFD-based High Availability

BFD-based high availability relies on the VPC BFD LRP function, so you need to modify the VPC resource to enable BFD Port.

Here is an example:

inet6 fe80::347c:6bff:fec7:826b/64 scope link
valid_lft forever preferred_lft forever

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip route show
default via 172.17.0.1 dev net1
10.16.0.0/16 dev eth0 proto kernel scope link src 10.16.0.12
172.17.0.0/16 dev net1 proto kernel scope link src 172.17.0.11

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- iptables -t nat -S
-P PREROUTING ACCEPT
-P INPUT ACCEPT
-P OUTPUT ACCEPT
-P POSTROUTING ACCEPT
-A POSTROUTING -s 10.16.0.0/16 -j MASQUERADE --random-fully

$ kubectl exec -ti gateway1-b9f8b4448-76lhm -c gateway -- bash
nobody@gateway1-b9f8b4448-76lhm:/kube-ovn$ tcpdump -i any -nnve icmp and host 172.17.0.1
tcpdump: data link type LINUX_SLL2
tcpdump: listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length 262144 bytes
06:50:58.936528 eth0 In ifindex 17 92:26:b8:9e:f2:1c ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 63, id 30481, offset 0, flags [DF], proto ICMP (1),
length 84)

10.16.0.9 > 172.17.0.1: ICMP echo request, id 37989, seq 0, length 64
06:50:58.936574 net1 Out ifindex 2 62:d8:71:90:7b:86 ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 62, id 30481, offset 0, flags [DF], proto ICMP (1),
length 84)

172.17.0.11 > 172.17.0.1: ICMP echo request, id 39449, seq 0, length 64
06:50:58.936613 net1 In ifindex 2 02:42:39:79:7f:08 ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 64, id 26701, offset 0, flags [none], proto ICMP
(1), length 84)

172.17.0.1 > 172.17.0.11: ICMP echo reply, id 39449, seq 0, length 64
06:50:58.936621 eth0 Out ifindex 17 36:7c:6b:c7:82:6b ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 63, id 26701, offset 0, flags [none], proto ICMP
(1), length 84)

172.17.0.1 > 10.16.0.9: ICMP echo reply, id 37989, seq 0, length 64

$ kubectl ko nbctl lr-policy-list ovn-cluster
Routing Policies

31000 ip4.dst == 10.16.0.0/16 allow
31000 ip4.dst == 100.64.0.0/16 allow
30000 ip4.dst == 172.18.0.2 reroute 100.64.0.3
30000 ip4.dst == 172.18.0.3 reroute 100.64.0.2
30000 ip4.dst == 172.18.0.4 reroute 100.64.0.4
29100 ip4.src == 10.16.0.0/16 reroute 10.16.0.12
29000 ip4.src == $ovn.default.kube.ovn.control.plane_ip4 reroute 100.64.0.2
29000 ip4.src == $ovn.default.kube.ovn.worker2_ip4 reroute 100.64.0.4
29000 ip4.src == $ovn.default.kube.ovn.worker_ip4 reroute 100.64.0.3

$ kubectl scale veg gateway1 --replicas=2
vpcegressgateway.kubeovn.io/gateway1 scaled

$ kubectl get veg gateway1
NAME VPC REPLICAS BFD ENABLED EXTERNAL SUBNET PHASE READY AGE
gateway1 ovn-cluster 2 false macvlan Completed true 39m

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway1 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
gateway1-b9f8b4448-76lhm 1/1 Running 0 40m 10.16.0.12 kube-ovn-worker <none> <none>
gateway1-b9f8b4448-zd4dl 1/1 Running 0 64s 10.16.0.13 kube-ovn-worker2 <none> <none>

$ kubectl ko nbctl lr-policy-list ovn-cluster
Routing Policies

31000 ip4.dst == 10.16.0.0/16 allow
31000 ip4.dst == 100.64.0.0/16 allow
30000 ip4.dst == 172.18.0.2 reroute 100.64.0.3
30000 ip4.dst == 172.18.0.3 reroute 100.64.0.2
30000 ip4.dst == 172.18.0.4 reroute 100.64.0.4
29100 ip4.src == 10.16.0.0/16 reroute 10.16.0.12, 10.16.0.13
29000 ip4.src == $ovn.default.kube.ovn.control.plane_ip4 reroute 100.64.0.2
29000 ip4.src == $ovn.default.kube.ovn.worker2_ip4 reroute 100.64.0.4
29000 ip4.src == $ovn.default.kube.ovn.worker_ip4 reroute 100.64.0.3

apiVersion: kubeovn.io/v1
kind: Vpc
metadata:

name: vpc1
spec:

5.2.3 Usage

- 99/324 - 2025 Kube-OVN Team

After the BFD Port is enabled, an LRP dedicated to BFD is automatically created on the corresponding OVN LR:

After that, set .spec.bfd.enabled to true in VPC Egress Gateway. An example is shown below:

To view VPC Egress Gateway information:

To view BFD connections:

bfdPort:
enabled: true
ip: 10.255.255.255

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: subnet1
spec:

vpc: vpc1
protocol: IPv4
cidrBlock: 192.168.0.0/24

$ kubectl ko nbctl show vpc1
router 0c1d1e8f-4c86-4d96-88b2-c4171c7ff824 (vpc1)

port bfd@vpc1
mac: "8e:51:4b:16:3c:90"
networks: ["10.255.255.255"]

port vpc1-subnet1
mac: "de:c9:5c:38:7a:61"
networks: ["192.168.0.1/24"]

apiVersion: kubeovn.io/v1
kind: VpcEgressGateway
metadata:

name: gateway2
namespace: default

spec:
vpc: vpc1
replicas: 2
internalSubnet: subnet1
externalSubnet: macvlan
bfd:

enabled: true
policies:

- snat: true
ipBlocks:

- 192.168.0.0/24

$ kubectl get veg gateway2 -o wide
NAME VPC REPLICAS BFD ENABLED EXTERNAL SUBNET PHASE READY INTERNAL IPS EXTERNAL IPS WORKING
NODES AGE
gateway2 vpc1 2 true macvlan Completed true ["192.168.0.2","192.168.0.3"] ["172.17.0.13","172.17.0.14"] ["kube-ovn-
worker","kube-ovn-worker2"] 58s

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway2 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
gateway2-fcc6b8b87-8lgvx 1/1 Running 0 2m18s 192.168.0.3 kube-ovn-worker2 <none> <none>
gateway2-fcc6b8b87-wmww6 1/1 Running 0 2m18s 192.168.0.2 kube-ovn-worker <none> <none>

$ kubectl ko nbctl lr-route-list vpc1
IPv4 Routes
Route Table <main>:

192.168.0.0/24 192.168.0.2 src-ip ecmp ecmp-symmetric-reply bfd
192.168.0.0/24 192.168.0.3 src-ip ecmp ecmp-symmetric-reply bfd

$ kubectl ko nbctl list bfd
_uuid : 223ede10-9169-4c7d-9524-a546e24bfab5
detect_mult : 3
dst_ip : "192.168.0.2"
external_ids : {af="4", vendor=kube-ovn, vpc-egress-gateway="default/gateway2"}
logical_port : "bfd@vpc1"
min_rx : 1000
min_tx : 1000
options : {}
status : up

_uuid : b050c75e-2462-470b-b89c-7bd38889b758
detect_mult : 3
dst_ip : "192.168.0.3"
external_ids : {af="4", vendor=kube-ovn, vpc-egress-gateway="default/gateway2"}
logical_port : "bfd@vpc1"
min_rx : 1000
min_tx : 1000
options : {}
status : up

$ kubectl exec gateway2-fcc6b8b87-8lgvx -c bfdd -- bfdd-control status
There are 1 sessions:

5.2.3 Usage

- 100/324 - 2025 Kube-OVN Team

Configuration Parameters

VPC BFD PORT

Session 1
id=1 local=192.168.0.3 (p) remote=10.255.255.255 state=Up

$ kubectl exec gateway2-fcc6b8b87-wmww6 -c bfdd -- bfdd-control status
There are 1 sessions:
Session 1
id=1 local=192.168.0.2 (p) remote=10.255.255.255 state=Up

Fields Type Optional Default Value Description Example

enabled boolean Yes false Whether to

enable the BFD

Port.

true

ip string No - The IP address

used by the BFD

Port. Must NOT

conflict with

other addresses.

IPv4, IPv6 and

dual-stack are

supported.

169.255.255.255 /

fdff::1 /

169.255.255.255,fdff::

1

nodeSelector object Yes - Label selector

used to select

nodes that

carries the BFD

Port work. the

BFD Port binds

an OVN HA

Chassis Group of

selected nodes

and works in

Active/Backup

mode. If this

field is not

specified, Kube-

OVN

automatically

selects up to

three nodes. You

can view all OVN

HA Chassis

Group resources

by executing

kubectl ko nbctl

list

ha_chassis_group .

-

nodeSelector.matchLabels dict/map Yes - A map of

{key,value}

pairs.

-

nodeSelector.matchExpressions object array Yes - A list of label

selector

requirements.

The

requirements

are ANDed.

-

5.2.3 Usage

- 101/324 - 2025 Kube-OVN Team

VPC EGRESS GATEWAY

Spec:

5.2.3 Usage

- 102/324 - 2025 Kube-OVN Team

Fields Type Optional Default Value Description Example

vpc string Yes Name of the

default VPC

(ovn-cluster)

VPC name. vpc1

replicas integer/int32 Yes 1 Replicas. 2

prefix string Yes - Prefix of the

workload

deployment

name. This

field is

immutable.

veg-

image string Yes - The image

used by the

workload

deployment.

docker.io/kubeovn/

kube-ovn:v1.14.0-

debug

internalSubnet string Yes Name of the

default subnet

within the

VPC.

Name of the

subnet used to

access the VPC

network.

subnet1

externalSubnet string No - Name of the

subnet used to

access the

external

network.

ext1

internalIPs string array Yes - IP addresses

used for

accessing the

VPC network.

IPv4, IPv6 and

dual-stack are

supported. The

number of IPs

specified must

NOT be less

than replicas .

It is

recommended

to set the

number to

<replicas> + 1

to avoid

extreme cases

where the Pod

is not created

properly.

10.16.0.101 /

fd00::11 /

10.16.0.101,fd00::11

externalIPs string array Yes - IP addresses

used for

accessing the

external

network. IPv4,

IPv6 and dual-

stack are

supported. The

number of IPs

10.16.0.101 /

fd00::11 /

10.16.0.101,fd00::11

5.2.3 Usage

- 103/324 - 2025 Kube-OVN Team

Fields Type Optional Default Value Description Example

specified must

NOT be less

than replicas .

It is

recommended

to set the

number to

<replicas> + 1

to avoid

extreme cases

where the Pod

is not created

properly.

bfd object Yes - BFD

Configuration.

-

policies object array Yes - Egress

policies.

Configurable

when

selectors is

configured.

-

selectors object array Yes - Configure

Egress policies

by namespace

selectors and

Pod selectors.

SNAT/

MASQUERADE

will be applied

to the matched

Pods.

Configurable

when policies

is configured.

-

nodeSelector object array Yes - Node selector

applied to the

workload. The

workload

(Deployment/

Pod) will run

on the selected

nodes.

-

trafficPolicy string Yes Cluster Available

values:

Cluster / Local .

Effective only

when BFD is

enabled.

When set to

Local , Egress

traffic will be

redirected to

the VPC

Egress

Local

5.2.3 Usage

- 104/324 - 2025 Kube-OVN Team

BFD Configuration:

Egress Policies:

Fields Type Optional Default Value Description Example

Gateway

instance

running on the

same node if

available. If

the instance is

down, Egress

traffic will be

redirected to

other

instances.

Fields Type Optional Default Value Description Example

enabled boolean Yes false Whether to

enable BFD.

true

minRX integer/int32 Yes 1000 BFD minRX in

milliseconds.

500

minTX integer/int32 Yes 1000 BFD minTX in

milliseconds.

500

multiplier integer/int32 Yes 3 BFD multiplier. 1

Fields Type Optional Default Value Description Example

snat boolean Yes false Whether to

enable SNAT/

MASQUERADE.

true

ipBlocks string array Yes - IP range

segments

applied to this

Gateway. Both

IPv4 and IPv6

are supported.

192.168.0.1 /

192.168.0.0/24

subnets string array Yes - The VPC subnet

name applied

to this Gateway.

IPv4, IPv6 and

dual-stack

subnets are

supported.

subnet1

5.2.3 Usage

- 105/324 - 2025 Kube-OVN Team

Selectors:

Node selector:

Fields Type Optional Default Value Description Example

namespaceSelector object Yes - Namespace

selector. An

empty label

selector

matches all

namespaces.

-

namespaceSelector.matchLabels dict/map Yes - A map of

{key,value}

pairs.

-

namespaceSelector.matchExpressions object array Yes - A list of label

selector

requirements.

The

requirements

are ANDed.

-

podSelector object Yes - Pod selector.

An empty label

selector

matches all

Pods.

-

podSelector.matchLabels dict/map Yes - A map of

{key,value}

pairs.

-

podSelector.matchExpressions object array Yes - A list of label

selector

requirements.

The

requirements

are ANDed.

-

Fields Type Optional Default Value Description Example

matchLabels dict/map Yes - A map of

{key,value}

pairs.

-

matchExpressions object array Yes - A list of label

selector

requirements.

The

requirements

are ANDed.

-

matchFields object array Yes - A list of field

selector

requirements.

The

requirements

are ANDed.

-

5.2.3 Usage

- 106/324 - 2025 Kube-OVN Team

Status:

 PDF Slack Support

July 29, 2025

December 12, 2024

GitHub

5.2.4 Comments

Fields Type Description Example

ready boolean Whether the gateway is ready. true

phase string The gateway processing phase. Pending / Processing /

Completed

internalIPs string array IP addresses used to access the VPC

network.

-

externalIPs string array IP addresses used to access the external

network.

-

workload object Workload information. -

workload.apiVersion string Workload API version. apps/v1

workload.kind string Workload kind. Deployment

workload.name string Workload name. gateway1

workload.nodes string array Names of the nodes where the workload

resides.

-

conditions object array - -

5.2.4 Comments

- 107/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow
https://github.com/zhangzujian
https://github.com/zhangzujian

5.3 VPC QoS

Kube-OVN supports using QoSPolicy CRD to limit the traffic rate of custom VPC.

5.3.1 EIP QoS

Limit the speed of EIP to 1Mbps and the priority to 1, and shared=false here means that this QoSPolicy can only be used for this

EIP and support dynamically modifying QoSPolicy to change QoS rules.

The QoSPolicy configuration is as follows:

The IptablesEIP configuration is as follows:

The value of .spec.qosPolicy supports being specified during creation and also supports modification after creation.

5.3.2 View EIPs with QoS enabled

View the corresponding EIPs that have been set up using label :

5.3.3 QoS for VPC NATGW net1 NIC

Limit the speed of the net1 NIC on VPC NATGW to 10Mbps and set the priority to 3. Here shared=true , which means that this

QoSPolicy can be used by multiple resources at the same time, and does not allow the modification of the contents of the

QoSPolicy in this scenario.

The QoSPolicy configuration is as follows:

apiVersion: kubeovn.io/v1
kind: QoSPolicy
metadata:

name: qos-eip-example
spec:

shared: false
bindingType: EIP
bandwidthLimitRules:
- name: eip-ingress

rateMax: "1" # Mbps
burstMax: "1" # Mbps
priority: 1
direction: ingress

- name: eip-egress
rateMax: "1" # Mbps
burstMax: "1" # Mbps
priority: 1
direction: egress

kind: IptablesEIP
apiVersion: kubeovn.io/v1
metadata:

name: eip-1
spec:

natGwDp: gw1
qosPolicy: qos-eip-example

kubectl get eip -l ovn.kubernetes.io/qos=qos-eip-example
NAME IP MAC NAT NATGWDP READY
eip-1 172.18.11.24 00:00:00:34:41:0B fip gw1 true

apiVersion: kubeovn.io/v1
kind: QoSPolicy
metadata:

name: qos-natgw-example
spec:

shared: true
bindingType: NATGW
bandwidthLimitRules:
- name: net1-ingress

interface: net1
rateMax: "10" # Mbps
burstMax: "10" # Mbps
priority: 3
direction: ingress

5.3 VPC QoS

- 108/324 - 2025 Kube-OVN Team

The VpcNatGateway configuration is as follows:

The value of .spec.qosPolicy supports both creation and subsequent modification.

5.3.4 QoS for specific traffic on net1 NIC

Limit the specific traffic on net1 NIC to 5Mbps and set the priority to 2. Here shared=true , which means that this QoSPolicy can

be used by multiple resources at the same time, and does not allow the modification of the contents of the QoSPolicy in this

scenario.

The QoSPolicy configuration is as follows:

The VpcNatGateway configuration is as follows:

5.3.5 View NATGWs with QoS enabled

View the corresponding NATGWs that have been set up using label :

- name: net1-egress
interface: net1
rateMax: "10" # Mbps
burstMax: "10" # Mbps
priority: 3
direction: egress

kind: VpcNatGateway
apiVersion: kubeovn.io/v1
metadata:

name: gw1
spec:

vpc: test-vpc-1
subnet: net1
lanIp: 10.0.1.254
qosPolicy: qos-natgw-example
selector:

- "kubernetes.io/hostname: kube-ovn-worker"
- "kubernetes.io/os: linux"

apiVersion: kubeovn.io/v1
kind: QoSPolicy
metadata:

name: qos-natgw-example
spec:

shared: true
bindingType: NATGW
bandwidthLimitRules:
- name: net1-extip-ingress

interface: net1
rateMax: "5" # Mbps
burstMax: "5" # Mbps
priority: 2
direction: ingress
matchType: ip
matchValue: src 172.18.11.22/32

- name: net1-extip-egress
interface: net1
rateMax: "5" # Mbps
burstMax: "5" # Mbps
priority: 2
direction: egress
matchType: ip
matchValue: dst 172.18.11.23/32

kind: VpcNatGateway
apiVersion: kubeovn.io/v1
metadata:

name: gw1
spec:

vpc: test-vpc-1
subnet: net1
lanIp: 10.0.1.254
qosPolicy: qos-natgw-example
selector:

- "kubernetes.io/hostname: kube-ovn-worker"
- "kubernetes.io/os: linux"

kubectl get vpc-nat-gw -l ovn.kubernetes.io/qos=qos-natgw-example
NAME VPC SUBNET LANIP
gw1 test-vpc-1 net1 10.0.1.254

5.3.4 QoS for specific traffic on net1 NIC

- 109/324 - 2025 Kube-OVN Team

5.3.6 View QoS rules

5.3.7 Limitations

QoSPolicy can only be deleted when it is not in use. Therefore, before deleting the QoSPolicy, please check the EIP and

NATGW that have enabled QoS, and remove their spec.qosPolicy configuration.

 PDF Slack Support

March 3, 2025

May 9, 2023

GitHub

5.3.8 Comments

kubectl get qos -A
NAME SHARED BINDINGTYPE
qos-eip-example false EIP
qos-natgw-example true NATGW

•

5.3.6 View QoS rules

- 110/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5.4 Customize VPC Internal Load Balancing

The Service provided by Kubernetes can be used for load balancing within the cluster. However, there are several issues with

using Service as internal load balancing in customize VPC mode:

The Service IP range is a cluster resource, shared by all customize VPCs, and cannot overlap.

Users cannot set internal load balancing IP addresses according to their own preferences.

To address the above issues, Kube OVN introduced the SwitchLBRule CRD in 1.11, allowing users to set internal load balancing

rules within customize VPCs.

SwitchLBRule support the following two ways to set internal load balancing rules within a customize VPC.

5.4.1 Automatically Generate Load Balancing Rules by Selector

Load balancing rules can be generated by selector automatic association with pod configuration through label .

example of SwitchLBRule is as follows:

usage of selector , sessionAffinity , and port is the same as Kubernetes Service.

vip : customize load balancing IP address.

namespace : namespace of the pod selected by selector .

Kube OVN will determine the VPC of the selected pod based on the SwitchLBRule definition and set the corresponding L2 LB.

5.4.2 Manually Defined Load Balancing Rules by Endpoints

Load balancing rules can be customized configured by endpoints , to support scenarios where load balancing rules cannot be

automatically generated through selector . For example, the load balancing backend is vm created by kubevirt .

example of SwitchLBRule is as follows:

1.

2.

apiVersion: kubeovn.io/v1
kind: SwitchLBRule
metadata:

name: cjh-slr-nginx
spec:

vip: 1.1.1.1
sessionAffinity: ClientIP
namespace: default
selector:

- app:nginx
ports:
- name: dns

port: 8888
targetPort: 80
protocol: TCP

•

•

•

apiVersion: kubeovn.io/v1
kind: SwitchLBRule
metadata:

name: cjh-slr-nginx
spec:

vip: 1.1.1.1
sessionAffinity: ClientIP
namespace: default
endpoints:

- 192.168.0.101
- 192.168.0.102
- 192.168.0.103

ports:
- name: dns

port: 8888
targetPort: 80
protocol: TCP

5.4 Customize VPC Internal Load Balancing

- 111/324 - 2025 Kube-OVN Team

usage of sessionAffinity , and port is the same as Kubernetes Service.

vip :customize load balancing IP address.

namespace :namespace of the pod selected by selector .

endpoints :load balancing backend IP list.

If both selector and endpoints are configured, the selector configuration will be automatically ignored.

5.4.3 Health Check

OVN supports health checks for load balancer endpoints, for IPv4 load balancers only. When health checks are enabled, the load

balancer uses only healthy endpoints.

[Health Checks](https://www.ovn.org/support/dist-docs/ovn-nb.5.html)

Add a health check to SwitchLBRule based on the health check of the ovn load balancer.While creating the SwitchLBRule , obtain a

reusable vip from the corresponding VPC and subnet as the detection endpoint and associate the corresponding

IP_Port_Mappings and Load_Balancer_Health_Check to the corresponding load balancer.

The detection endpoint vip will be automatically determined whether it exists in the corresponding subnet with the same name

of the subnet . If it does not exist, it will be automatically created and deleted after all associated SwitchLBRule are deleted.

Currently, only SwitchLBRule automatically generated through Selector are supported.

Create SwitchLBRule

The vip with the same name of the subnet has been created.

Query the Load_Balancer_Health_Check and Service_Monitor by commands.

•

•

•

•

•

root@server:~# kubectl get po -o wide -n vulpecula
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-78d9578975-f4qn4 1/1 Running 3 4d16h 10.16.0.4 worker <none> <none>
nginx-78d9578975-t8tm5 1/1 Running 3 4d16h 10.16.0.6 worker <none> <none>

create slr

root@server:~# cat << END > slr.yaml
apiVersion: kubeovn.io/v1
kind: SwitchLBRule
metadata:
 name: nginx
 namespace: vulpecula
spec:
 vip: 1.1.1.1
 sessionAffinity: ClientIP
 namespace: default
 selector:
 - app:nginx
 ports:
 - name: dns
 port: 8888
 targetPort: 80
 protocol: TCP
END

root@server:~# kubectl apply -f slr.yaml
root@server:~# kubectl get slr
NAME VIP PORT(S) SERVICE AGE
vulpecula-nginx 1.1.1.1 8888/TCP default/slr-vulpecula-nginx 3d21h

vip for check

root@server:~# kubectl get vip
NAME NS V4IP MAC V6IP PMAC SUBNET READY TYPE
vulpecula-subnet 10.16.0.2 00:00:00:39:95:C1 <nil> vulpecula-subnet true

root@server:~# kubectl ko nbctl list Load_Balancer
_uuid : 3cbb6d43-44aa-4028-962f-30d2dba9f0b8
external_ids : {}
health_check : [5bee3f12-6b54-411c-9cc8-c9def8f67356]
ip_port_mappings : {"10.16.0.4"="nginx-78d9578975-f4qn4.default:10.16.0.2", "10.16.0.6"="nginx-78d9578975-t8tm5.default:10.16.0.2"}
name : cluster-tcp-session-loadbalancer
options : {affinity_timeout="10800"}
protocol : tcp

5.4.3 Health Check

- 112/324 - 2025 Kube-OVN Team

https://www.ovn.org/support/dist-docs/ovn-nb.5.html

At this point, the service response can be successfully obtained through load balancer vip .

Update load balance service endpoints

Update the service endpoints of the load balancer by deleting the pod .

Query the Load_Balancer_Health_Check and Service_Monitor by commands, the results have undergone corresponding changes.

selection_fields : [ip_src]
vips : {"1.1.1.1:8888"="10.16.0.4:80,10.16.0.6:80"}

root@server:~# kubectl ko nbctl list Load_Balancer_Health_Check
_uuid : 5bee3f12-6b54-411c-9cc8-c9def8f67356
external_ids : {switch_lb_subnet=vulpecula-subnet}
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
vip : "1.1.1.1:8888"

root@server:~# kubectl ko sbctl list Service_Monitor
_uuid : 1bddc541-cc49-44ea-9935-a4208f627a91
external_ids : {}
ip : "10.16.0.4"
logical_port : nginx-78d9578975-f4qn4.default
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
port : 80
protocol : tcp
src_ip : "10.16.0.2"
src_mac : "c6:d4:b8:08:54:e7"
status : online

_uuid : 84dd24c5-e1b4-4e97-9daa-13687ed59785
external_ids : {}
ip : "10.16.0.6"
logical_port : nginx-78d9578975-t8tm5.default
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
port : 80
protocol : tcp
src_ip : "10.16.0.2"
src_mac : "c6:d4:b8:08:54:e7"
status : online

root@server:~# kubectl exec -it -n vulpecula nginx-78d9578975-t8tm5 -- curl 1.1.1.1:8888
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<p>Thank you for using nginx.</p>
</body>
</html>

kubectl delete po nginx-78d9578975-f4qn4
kubectl get po -o wide -n vulpecula
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-78d9578975-lxmvh 1/1 Running 0 31s 10.16.0.8 worker <none> <none>
nginx-78d9578975-t8tm5 1/1 Running 3 4d16h 10.16.0.6 worker <none> <none>

root@server:~# kubectl ko nbctl list Load_Balancer
_uuid : 3cbb6d43-44aa-4028-962f-30d2dba9f0b8
external_ids : {}
health_check : [5bee3f12-6b54-411c-9cc8-c9def8f67356]
ip_port_mappings : {"10.16.0.4"="nginx-78d9578975-f4qn4.default:10.16.0.2", "10.16.0.6"="nginx-78d9578975-t8tm5.default:10.16.0.2",
"10.16.0.8"="nginx-78d9578975-lxmvh.default:10.16.0.2"}
name : cluster-tcp-session-loadbalancer
options : {affinity_timeout="10800"}
protocol : tcp
selection_fields : [ip_src]
vips : {"1.1.1.1:8888"="10.16.0.6:80,10.16.0.8:80"}

root@server:~# kubectl ko nbctl list Load_Balancer_Health_Check
_uuid : 5bee3f12-6b54-411c-9cc8-c9def8f67356
external_ids : {switch_lb_subnet=vulpecula-subnet}
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
vip : "1.1.1.1:8888"

root@server:~# kubectl ko sbctl list Service_Monitor
_uuid : 84dd24c5-e1b4-4e97-9daa-13687ed59785
external_ids : {}
ip : "10.16.0.6"
logical_port : nginx-78d9578975-t8tm5.default
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
port : 80
protocol : tcp
src_ip : "10.16.0.2"
src_mac : "c6:d4:b8:08:54:e7"
status : online

_uuid : 5917b7b7-a999-49f2-a42d-da81f1eeb28f
external_ids : {}

5.4.3 Health Check

- 113/324 - 2025 Kube-OVN Team

Delete SwitchLBRule and confirm the resource status, Load_Balancer_Health_Check adn Service_Monitor has been deleted, and the

corresponding vip has also been deleted.

 PDF Slack Support

July 30, 2025

May 18, 2023

GitHub

5.4.4 Comments

ip : "10.16.0.8"
logical_port : nginx-78d9578975-lxmvh.default
options : {failure_count="3", interval="5", success_count="3", timeout="20"}
port : 80
protocol : tcp
src_ip : "10.16.0.2"
src_mac : "c6:d4:b8:08:54:e7"
status : online

root@server:~# kubectl delete -f slr.yaml
switchlbrule.kubeovn.io "vulpecula-nginx" deleted
root@server:~# kubectl get vip
No resources found
root@server:~# kubectl ko sbctl list Service_Monitor
root@server:~#
root@server:~# kubectl ko nbctl list Load_Balancer_Health_Check
root@server:~#

5.4.4 Comments

- 114/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow
https://github.com/starbops
https://github.com/starbops

5.5 Custom VPC Internal DNS

Due to the isolation of the user-defined VPC and the default VPC network, the coredns deployed in the default VPC cannot be

accessed from within the custom VPC. If you wish to use the intra-cluster domain name resolution capability provided by

Kubernetes within your custom VPC, you can refer to this document and utilize the vpc-dns CRD to do so.

This CRD eventually deploys a coredns that has two NICs, one in the user-defined VPC and the other in the default VPC to enable

network interoperability and provide an internal load balancing within the custom VPC through the custom VPC internal load

balancing.

This DNS address will not be automatically injected into Pods or VMs. Users need to modify the content of /etc/resolv.conf through

Webhook or VM image templates.

5.5.1 Deployment of vpc-dns dependent resources

Note

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: system:vpc-dns
rules:

- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch

- apiGroups:
- discovery.k8s.io
resources:
- endpointslices
verbs:
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: vpc-dns
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:vpc-dns

subjects:
- kind: ServiceAccount

name: vpc-dns
namespace: kube-system

apiVersion: v1
kind: ServiceAccount
metadata:

name: vpc-dns
namespace: kube-system

apiVersion: v1
kind: ConfigMap
metadata:

name: vpc-dns-corefile
namespace: kube-system

data:
Corefile: |

.:53 {
errors
health {

lameduck 5s
}
ready

5.5 Custom VPC Internal DNS

- 115/324 - 2025 Kube-OVN Team

In addition to the above resources, the feature relies on the nat-gw-pod image for routing configuration.

5.5.2 Configuring Additional Network

5.5.3 Configuring Configmap for vpc-dns

Create a configmap under the kube-system namespace to configure the vpc-dns usage parameters that will be used later to start

the vpc-dns function:

enable-vpc-dns : enable vpc dns feature, true as default

coredns-image : dns deployment image. Defaults to the clustered coredns deployment version

coredns-vip : the vip that provides lb services for coredns.

coredns-template : the URL where the coredns deployment template is located. defaults to the current version of the ovn

directory. coredns-template.yaml default is

https://raw.githubusercontent.com/kubeovn/kube-ovn/<kube-ovn version>/yamls/coredns-template.yaml .

nad-name : configured network-attachment-definitions Resource name.

nad-provider : the name of the provider to use.

k8s-service-host : the ip used for coredns to access the k8s apiserver service, defaults to the apiserver address within the

cluster.

k8s-service-port : the port used for coredns to access the k8s apiserver service, defaults to the apiserver port within the

cluster.

5.5.4 Deploying vpc-dns

configure vpc-dns yaml:

kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa

}
prometheus :9153
forward . /etc/resolv.conf {

prefer_udp
}
cache 30
loop
reload
loadbalance

}

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: ovn-nad
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "ovn-nad.default.ovn"

}'

apiVersion: v1
kind: ConfigMap
metadata:

name: vpc-dns-config
namespace: kube-system

data:
coredns-vip: 10.96.0.3
enable-vpc-dns: "true"
nad-name: ovn-nad
nad-provider: ovn-nad.default.ovn

•

•

•

•

•

•

•

•

kind: VpcDns
apiVersion: kubeovn.io/v1
metadata:

name: test-cjh1
spec:

vpc: cjh-vpc-1

5.5.2 Configuring Additional Network

- 116/324 - 2025 Kube-OVN Team

vpc : the name of the vpc used to deploy the dns component.

subnet : subnet name for deploying dns components.

replicas : vpc dns deployment replicas

View information about deployed resources:

ACTIVE : true Customized dns component deployed, false No deployment.

Restrictions: only one custom dns component will be deployed under a VPC

When multiple vpc-dns resources are configured under a VPC (i.e., different subnets for the same VPC), only one vpc-dns

resource is in the state true``, and the others are fasle`.

When the true vpc-dns is removed, the other false vpc-dns will be obtained for deployment.

5.5.5 Validate deployment results

To view vpc-dns Pod status, use label app=vpc-dns to view all vpc-dns Pod status:

View switch lb rule status information:

Go to the Pod under this VPC and test the dns resolution:

The subnet where the switch lb rule under this VPC is located and the Pods under other subnets under the same VPC can be

resolved.

 PDF Slack Support

July 31, 2025

October 8, 2023

GitHub

5.5.6 Comments

subnet: cjh-subnet-1
replicas: 2

•

•

•

kubectl get vpc-dns
NAME ACTIVE VPC SUBNET
test-cjh1 false cjh-vpc-1 cjh-subnet-1
test-cjh2 true cjh-vpc-1 cjh-subnet-2

•

•

kubectl -n kube-system get pods -l app=vpc-dns
NAME READY STATUS RESTARTS AGE
vpc-dns-test-cjh1-7b878d96b4-g5979 1/1 Running 0 28s
vpc-dns-test-cjh1-7b878d96b4-ltmf9 1/1 Running 0 28s

kubectl -n kube-system get slr
NAME VIP PORT(S) SERVICE AGE
vpc-dns-test-cjh1 10.96.0.3 53/UDP,53/TCP,9153/TCP kube-system/slr-vpc-dns-test-cjh1 113s

nslookup kubernetes.default.svc.cluster.local 10.96.0.3

5.5.5 Validate deployment results

- 117/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5.6 SecurityGroup Usage

Kube-OVN has support for the configuration of security-groups through the SecurityGroup CRD.

Kube-OVN also supports port security to prevent MAC and IP spoofing by allowing only L2/L3 source addresses matching the

ones allocated by the IPAM.

5.6.1 SecurityGroup Example

The specific meaning of each field of the SecurityGroup can be found in the Kube-OVN API Reference.

Pods bind security-groups by adding annotations, two annotations are used:

port_security : Source address verification. If this function is enabled, only packets with L2/L3 addresses assigned by Kube-

OVN's IPAM can be exported from the pod network adapter. After this function is disabled, any L2/L3 address can be exported.

security_groups: indicates a security group that contains a series of ACL rules

When configuring a security group, the priority value ranges from 1 to 200, with smaller values indicating higher priority.

When implementing a security group through ACLs, the security group's priority is mapped to the ACL priority. The specific

mapping relationship is as follows: ACL priority=2300−Security group priority, therefore, it is essential to distinguish between

the priorities of security groups and subnet ACLs.

These two annotations are responsible for functions that are independent of each other.

5.6.2 Caution

Security-groups are finally restricted by setting ACL rules, and as mentioned in the OVN documentation, if two ACL rules

match with the same priority, it is uncertain which ACL will actually work. Therefore, when setting up security-group rules,

you need to be careful to differentiate the priority.

When adding a security-group, it is important to know what restrictions are being added. As a CNI, Kube-OVN will perform a

Pod-to-Gateway connectivity test after creating a Pod.

5.6.3 Actual test

Create a Pod using the following YAML, and specify the security-group in the annotation for the pod.

apiVersion: kubeovn.io/v1
kind: SecurityGroup
metadata:

name: sg-example
spec:

allowSameGroupTraffic: true
egressRules:
- ipVersion: ipv4

policy: allow
priority: 1
protocol: all
remoteAddress: 10.16.0.13 # 10.16.0.0/16 Configure network segment
remoteType: address

ingressRules:
- ipVersion: ipv4

policy: deny
priority: 1
protocol: icmp
remoteAddress: 10.16.0.14
remoteType: address

•

•

•

ovn.kubernetes.io/port_security: "true"
ovn.kubernetes.io/security_groups: sg-example

•

•

apiVersion: v1
kind: Pod
metadata:

labels:
app: static

5.6 SecurityGroup Usage

- 118/324 - 2025 Kube-OVN Team

The actual test results show as follows:

Execute kubectl describe pod to see information about the pod, and you can see the error message:

Modify the rules for the security group to add access rules to the gateway, refer to the following:

annotations:
ovn.kubernetes.io/port_security: 'true'
ovn.kubernetes.io/security_groups: 'sg-example'

name: sg-test-pod
namespace: default

spec:
nodeName: kube-ovn-worker
containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: qatest

kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
sg-test-pod 0/1 ContainerCreating 0 5h32m <none> kube-ovn-worker <none> <none>
test-99fff7f86-52h9r 1/1 Running 0 5h41m 10.16.0.14 kube-ovn-control-plane <none> <none>
test-99fff7f86-qcgjw 1/1 Running 0 5h43m 10.16.0.13 kube-ovn-worker <none> <none>

kubectl describe pod sg-test-pod
Name: sg-test-pod
Namespace: default
Priority: 0
Node: kube-ovn-worker/172.18.0.2
Start Time: Tue, 28 Feb 2023 10:29:36 +0800
Labels: app=static
Annotations: ovn.kubernetes.io/allocated: true

ovn.kubernetes.io/cidr: 10.16.0.0/16
ovn.kubernetes.io/gateway: 10.16.0.1
ovn.kubernetes.io/ip_address: 10.16.0.15
ovn.kubernetes.io/logical_router: ovn-cluster
ovn.kubernetes.io/logical_switch: ovn-default
ovn.kubernetes.io/mac_address: 00:00:00:FA:17:97
ovn.kubernetes.io/pod_nic_type: veth-pair
ovn.kubernetes.io/port_security: true
ovn.kubernetes.io/routed: true
ovn.kubernetes.io/security_groups: sg-allow-reject

Status: Pending
IP:
IPs: <none>
-
- -
- -
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedCreatePodSandBox 5m3s (x70 over 4h59m) kubelet (combined from similar events): Failed to create pod sandbox: rpc error: code = Unknown desc =

failed to setup network for sandbox "40636e0c7f1ade5500fa958486163d74f2e2300051a71522a9afd7ba0538afb6": plugin type="kube-ovn" failed (add): RPC failed;
request ip return 500 configure nic failed 10.16.0.15 network not ready after 200 ping 10.16.0.1

apiVersion: kubeovn.io/v1
kind: SecurityGroup
metadata:

name: sg-gw-both
spec:

allowSameGroupTraffic: true
egressRules:
- ipVersion: ipv4

policy: allow
priority: 2
protocol: all
remoteAddress: 10.16.0.13
remoteType: address

- ipVersion: ipv4
policy: allow
priority: 1
protocol: all
remoteAddress: 10.16.0.1
remoteType: address

ingressRules:
- ipVersion: ipv4

policy: deny
priority: 2
protocol: icmp
remoteAddress: 10.16.0.14
remoteType: address

- ipVersion: ipv4
policy: allow
priority: 1
protocol: icmp
remoteAddress: 10.16.0.1
remoteType: address

5.6.3 Actual test

- 119/324 - 2025 Kube-OVN Team

In the inbound and outbound rules respectively, add a rule to allow access to the gateway, and set the rule to have the highest

priority.

Deploying with the following yaml to bind security group, confirm that the Pod is operational:

To view Pod information after deployment:

So for the use of security groups, be particularly clear about the effect of the added restriction rules. If it is simply to restrict

traffic access, consider using a network policy instead.

 PDF Slack Support

July 30, 2025

February 28, 2023

GitHub

5.6.4 Comments

apiVersion: v1
kind: Pod
metadata:

labels:
app: static

annotations:
ovn.kubernetes.io/port_security: 'true'
ovn.kubernetes.io/security_groups: 'sg-gw-both'

name: sg-gw-both
namespace: default

spec:
nodeName: kube-ovn-worker
containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: qatest

kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
sg-test-pod 0/1 ContainerCreating 0 5h41m <none> kube-ovn-worker <none> <none>
sg-gw-both 1/1 Running 0 5h37m 10.16.0.19 kube-ovn-worker <none> <none>

5.6.4 Comments

- 120/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5.7 Support OVN EIP,FIP and SNAT

Support the use of any number of provider-network vlan (external) subnet resources by any VPC OVN NAT function, which is

independent of the default VPC EIP/SNAT function.

5.7.1 Two independent ways of use

default external network : If only one external network is needed, the startup parameters need to be specified in kube-ovn-

controller and kube-ovn-cni . Then use this default external subnet through the ovn-external-gw-config or VPC spec

enableExternal attribute.

CRD : Create the provider-network vlan subnet resources, and then use any external subnets by VPC spec extraExternalSubnets ,

and then use ovn-eip, ovn-dnat, ovn-fip, ovn-snat .

The pod access the public network based on the snat

Pod uses a centralized gateway based on Fip, and the path is similar.

Pod is based on the general flow of distributed gateway FIP (dnat_and_snat) to exit the public network. Finally, POD can exit the

public network based on the public network NIC of the local node.

The CRD supported by this function is basically the same as the iptables nat gw public network solution.

ovn eip: occupies a public ip address and is allocated from the underlay provider network vlan subnet

ovn fip: one-to-one dnat snat, which provides direct public network access for ip addresses and vip in a VPC

ovn snat: a subnet cidr or a single VPC ip or vip can access public networks based on snat

ovn dnat: based router lb, which enables direct access to a group of endpoints in a VPC based on a public endpoint

5.7.2 1. Deployment

If the user selects the default external network mode for use:

During the deployment phase, you may need to specify a default public network logical switch based on actual conditions. If no

vlan is in use (vlan 0), the following startup vlan id do not need to be configured.

•

•

graph LR

pod-->subnet-->vpc-->lrp--bind-->gw-chassis-->snat-->lsp-->external-subnet
lrp-.-peer-.-lsp

graph LR

pod-->subnet-->vpc-->lrp--bind-->local-chassis-->snat-->lsp-->external-subnet

lrp-.-peer-.-lsp

•

•

•

•

When deploying you need to refer to the above scenario and specify the following parameters as needed according to the actual situation
1. kube-ovn-controller Startup parameters to be configured

- --external-gateway-vlanid=204
- --external-gateway-switch=external204

2. kube-ovn-cni Startup parameters to be configured:
- --external-gateway-switch=external204

The above configuration is consistent with the following public network configuration vlan id and resource name,
currently only support to specify one underlay public network as the default external public network.

5.7 Support OVN EIP,FIP and SNAT

- 121/324 - 2025 Kube-OVN Team

The design and use of this configuration item takes into account the following factors:

Based on this configuration item can be docked to the provider network, vlan, subnet resources.

Based on this configuration item, the default VPC enable_eip_snat function can be docked to the existing vlan, subnet

resources, while supporting the ipam

If only the default VPC's enable_eip_snat mode is used with the old pod annotation based eip fip snat, then the following

configuration is not required.

Based on this configuration you can not use the default VPC enable_eip_snat process, only by corresponding to vlan, subnet

process, can be compatible with only custom VPC use eip snat usage scenarios.

The neutron ovn mode also has a certain static file configuration designation that is, for now, generally consistent.

1.1 Create the underlay public network

1.2 Default VPC enable eip_snat

This feature currently supports the ability to create lrp type ovn eip resources without specifying the lrp ip and mac, which is

already supported for automatic acquisition. If specified, it is equivalent to specifying the ip to create an ovn-eip of type lrp. Of

course, you can also manually create the lrp type ovn eip in advance.

1.3 Custom VPC enable eip snat fip function

Clusters generally require multiple gateway nodes to achieve high availability. The configuration is as follows:

•

•

•

•

provider-network, vlan, subnet
cat 01-provider-network.yaml

apiVersion: kubeovn.io/v1
kind: ProviderNetwork
metadata:

name: external204
spec:

defaultInterface: vlan

cat 02-vlan.yaml

apiVersion: kubeovn.io/v1
kind: Vlan
metadata:

name: vlan204
spec:

id: 204
provider: external204

cat 03-vlan-subnet.yaml

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: external204
spec:

protocol: IPv4
cidrBlock: 10.5.204.0/24
gateway: 10.5.204.254
vlan: vlan204
excludeIps:
- 10.5.204.1..10.5.204.100

Enable the default VPC and the above underlay public provider subnet interconnection

cat 00-centralized-external-gw-no-ip.yaml
apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-external-gw-config
namespace: kube-system

data:
enable-external-gw: "true"
external-gw-nodes: "pc-node-1,pc-node-2,pc-node-3"
type: "centralized"
external-gw-nic: "vlan"
external-gw-addr: "10.5.204.254/24"

5.7.2 1. Deployment

- 122/324 - 2025 Kube-OVN Team

After the above template is applied, you should see the following resources exist

Note: Considering that enableExternal supports multiple external networks and it is impossible to determine which external

network uses which route, automatic maintenance of public network routes is currently not supported. Users can specify policy

routes or static routes through the VPC CRD definition

First specify external-gw-nodes by adding label
kubectl label nodes pc-node-1 pc-node-2 pc-node-3 ovn.kubernetes.io/external-gw=true

cat 00-ns.yml

apiVersion: v1
kind: Namespace
metadata:

name: vpc1

cat 01-vpc-ecmp-enable-external-bfd.yml

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc1
spec:

namespaces:
- vpc1
enableExternal: true
staticRoutes:
- cidr: 0.0.0.0/0

nextHopIP: 10.5.204.254
policy: policyDst

VPC enableExternal will automatically create an lrp association to the default public network specified above

cat 02-subnet.yml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: vpc1-subnet1
spec:

cidrBlock: 192.168.0.0/24
default: false
disableGatewayCheck: false
disableInterConnection: true
enableEcmp: true
gatewayNode: ""
gatewayType: distributed
#gatewayType: centralized
natOutgoing: false
private: false
protocol: IPv4
provider: ovn
vpc: vpc1
namespaces:
- vpc1

kubectl ko nbctl show vpc1

router 87ad06fd-71d5-4ff8-a1f0-54fa3bba1a7f (vpc1)
port vpc1-vpc1-subnet1

mac: "00:00:00:ED:8E:C7"
networks: ["192.168.0.1/24"]

port vpc1-external204
mac: "00:00:00:EF:05:C7"
networks: ["10.5.204.105/24"]
gateway chassis: [7cedd14f-265b-42e5-ac17-e03e7a1f2342 276baccb-fe9c-4476-b41d-05872a94976d fd9f140c-c45d-43db-a6c0-0d4f8ea298dd]

nat 21d853b0-f7b4-40bd-9a53-31d2e2745739
external ip: "10.5.204.115"
logical ip: "192.168.0.0/24"
type: "snat"

kubectl ko nbctl lr-route-list vpc1

IPv4 Routes
Route Table <main>:

0.0.0.0/0 10.5.204.254 dst-ip

Please configure this default route in the VPC CRD definition

5.7.2 1. Deployment

- 123/324 - 2025 Kube-OVN Team

1.4 Use additional public network

1.4.1 CREATE ADDITIONAL UNDERLAY PUBLIC NETWORK

Additional public network functions will be enabled after the default eip snat fip function is enabled. If there is only 1 public

network card, please use the default eip snat fip function.

1.4.2 CUSTOM VPC CONFIGURATION

After the above template is applied, you should see the following resources exist

5.7.3 2. ovn-eip

This function is designed and used in the same way as iptables-eip, ovn-eip currently has three types

nat: indicates ovn dnat, fip, and snat.

lrp: indicates the resource used to connect a VPC to the public network

lsp: In the ovn BFD-based ecmp static route scenario, an ovs internal port is provided on the gateway node as the next hop of

the ecmp route

provider-network, vlan, subnet
cat 01-extra-provider-network.yaml
apiVersion: kubeovn.io/v1
kind: ProviderNetwork
metadata:

name: extra
spec:

defaultInterface: vlan
cat 02-extra-vlan.yaml
apiVersion: kubeovn.io/v1
kind: Vlan
metadata:

name: vlan0
spec:

id: 0
provider: extra

cat 03-extra-vlan-subnet.yaml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: extra
spec:

protocol: IPv4
cidrBlock: 10.10.204.0/24
gateway: 10.10.204.254
vlan: vlan0
excludeIps:
- 10.10.204.1..10.10.204.100

apiVersion: kubeovn.io/v1
kind: Vpc
metadata:

name: vpc1
spec:

namespaces:
- vpc1
enableExternal: true # VPC enableExternal will automatically create an lrp association to the default external network specified above
extraExternalSubnets: # configure extraExternalSubnets to support connecting any multiple public networks
- extra

kubectl ko nbctl show vpc1
router 87ad06fd-71d5-4ff8-a1f0-54fa3bba1a7f (vpc1)

port vpc1-vpc1-subnet1
mac: "00:00:00:ED:8E:C7"
networks: ["192.168.0.1/24"]

port vpc1-external204
mac: "00:00:00:EF:05:C7"
networks: ["10.5.204.105/24"]
gateway chassis: [7cedd14f-265b-42e5-ac17-e03e7a1f2342 276baccb-fe9c-4476-b41d-05872a94976d fd9f140c-c45d-43db-a6c0-0d4f8ea298dd]

port vpc1-extra
mac: "00:00:00:EF:6A:C7"
networks: ["10.10.204.105/24"]
gateway chassis: [7cedd14f-265b-42e5-ac17-e03e7a1f2342 276baccb-fe9c-4476-b41d-05872a94976d fd9f140c-c45d-43db-a6c0-0d4f8ea298dd]

•

•

•

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: eip-static
spec:

5.7.3 2. ovn-eip

- 124/324 - 2025 Kube-OVN Team

The externalSubnet field does not need to be configured. If not configured, the default public network will be used. In the above

configuration, the default public network is external204.

If you want to use an additional public network, you need to explicitly specify the public network to be extended through

externalSubnet. In the above configuration, the extended public network is extra.

2.1 Create an fip for pod

externalSubnet: external204
type: nat

Dynamically allocate an eip resource that is reserved for fip dnat_and_snat scenarios

kubectl get po -o wide -n vpc1 vpc-1-busybox01
NAME READY STATUS RESTARTS AGE IP NODE
vpc-1-busybox01 1/1 Running 0 3d15h 192.168.0.2 pc-node-2

kubectl get ip vpc-1-busybox01.vpc1
NAME V4IP V6IP MAC NODE SUBNET
vpc-1-busybox01.vpc1 192.168.0.2 00:00:00:0A:DD:27 pc-node-2 vpc1-subnet1

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: eip-static
spec:

externalSubnet: external204
type: nat

kind: OvnFip
apiVersion: kubeovn.io/v1
metadata:

name: eip-static
spec:

ovnEip: eip-static
ipName: vpc-1-busybox01.vpc1 # the name of the ip crd, which is unique
type: "centralized" # centralized or distributed

--
Alternatively, you can specify a VPC or Intranet ip address

kind: OvnFip
apiVersion: kubeovn.io/v1
metadata:

name: eip-static
spec:

ovnEip: eip-static
vpc: vpc1
v4Ip: 192.168.0.2
type: "centralized" # centralized or distributed

kubectl get ofip
NAME VPC V4EIP V4IP READY IPTYPE IPNAME
eip-for-vip vpc1 10.5.204.106 192.168.0.3 true vip test-fip-vip
eip-static vpc1 10.5.204.101 192.168.0.2 true vpc-1-busybox01.vpc1
kubectl get ofip eip-static
NAME VPC V4EIP V4IP READY IPTYPE IPNAME
eip-static vpc1 10.5.204.101 192.168.0.2 true vpc-1-busybox01.vpc1

[root@pc-node-1 03-cust-vpc]# ping 10.5.204.101
PING 10.5.204.101 (10.5.204.101) 56(84) bytes of data.
64 bytes from 10.5.204.101: icmp_seq=2 ttl=62 time=1.21 ms
64 bytes from 10.5.204.101: icmp_seq=3 ttl=62 time=0.624 ms
64 bytes from 10.5.204.101: icmp_seq=4 ttl=62 time=0.368 ms
^C
--- 10.5.204.101 ping statistics ---
4 packets transmitted, 3 received, 25% packet loss, time 3049ms
rtt min/avg/max/mdev = 0.368/0.734/1.210/0.352 ms
[root@pc-node-1 03-cust-vpc]#

pod <--> node ping is working

The key resources that this public ip can pass include the following ovn nb resources

kubectl ko nbctl show vpc1
router 87ad06fd-71d5-4ff8-a1f0-54fa3bba1a7f (vpc1)

port vpc1-vpc1-subnet1
mac: "00:00:00:ED:8E:C7"
networks: ["192.168.0.1/24"]

port vpc1-external204
mac: "00:00:00:EF:05:C7"
networks: ["10.5.204.105/24"]
gateway chassis: [7cedd14f-265b-42e5-ac17-e03e7a1f2342 276baccb-fe9c-4476-b41d-05872a94976d fd9f140c-c45d-43db-a6c0-0d4f8ea298dd]

nat 813523e7-c68c-408f-bd8c-cba30cb2e4f4

5.7.3 2. ovn-eip

- 125/324 - 2025 Kube-OVN Team

2.2 Create an fip for vip

In order to facilitate the use of some vip scenarios, such as inside kubevirt VM, keepalived use vip, kube-vip use vip, etc. the vip

need public network access.

external ip: "10.5.204.101"
logical ip: "192.168.0.2"
type: "dnat_and_snat"

First create vip, eip, then bind eip to vip
cat vip.yaml

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: test-fip-vip
spec:

subnet: vpc1-subnet1

cat 04-fip.yaml

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: eip-for-vip
spec:

externalSubnet: external204
type: nat

kind: OvnFip
apiVersion: kubeovn.io/v1
metadata:

name: eip-for-vip
spec:

ovnEip: eip-for-vip
ipType: vip # By default fip is for pod ip, here you need to specify the docking to vip resources
ipName: test-fip-vip

Alternatively, you can specify a VPC or Intranet ip address

kind: OvnFip
apiVersion: kubeovn.io/v1
metadata:

name: eip-for-vip
spec:

ovnEip: eip-for-vip
ipType: vip # By default fip is for pod ip, here you need to specify the docking to vip resources
vpc: vpc1
v4Ip: 192.168.0.3

kubectl get ofip
NAME VPC V4EIP V4IP READY IPTYPE IPNAME
eip-for-vip vpc1 10.5.204.106 192.168.0.3 true vip test-fip-vip

[root@pc-node-1 fip-vip]# ping 10.5.204.106
PING 10.5.204.106 (10.5.204.106) 56(84) bytes of data.
64 bytes from 10.5.204.106: icmp_seq=1 ttl=62 time=0.694 ms
64 bytes from 10.5.204.106: icmp_seq=2 ttl=62 time=0.436 ms

node <--> pod fip is working

The way ip is used inside the pod is roughly as follows

[root@pc-node-1 fip-vip]# kubectl -n vpc1 exec -it vpc-1-busybox03 -- bash
[root@vpc-1-busybox03 /]#
[root@vpc-1-busybox03 /]#
[root@vpc-1-busybox03 /]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
1568: eth0@if1569: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

link/ether 00:00:00:56:40:e5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 192.168.0.5/24 brd 192.168.0.255 scope global eth0

valid_lft forever preferred_lft forever
inet 192.168.0.3/24 scope global secondary eth0 # vip here

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:fe56:40e5/64 scope link

valid_lft forever preferred_lft forever

[root@vpc-1-busybox03 /]# tcpdump -i eth0 host 192.168.0.3 -netvv
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
00:00:00:ed:8e:c7 > 00:00:00:56:40:e5, ethertype IPv4 (0x0800), length 98: (tos 0x0, ttl 62, id 44830, offset 0, flags [DF], proto ICMP (1), length 84)

5.7.3 2. ovn-eip

- 126/324 - 2025 Kube-OVN Team

5.7.4 3. ovn-snat

3.1 ovn-snat corresponds to the CIDR of a subnet

This feature is designed and used in much the same way as iptables-snat

If you want to use an additional public network, you need to explicitly specify the public network to be extended through

externalSubnet. In the above configuration, the extended public network is extra.

3.2 ovn-snat corresponds to a pod IP

This feature is designed and used in much the same way as iptables-snat

10.5.32.51 > 192.168.0.3: ICMP echo request, id 177, seq 1, length 64
00:00:00:56:40:e5 > 00:00:00:ed:8e:c7, ethertype IPv4 (0x0800), length 98: (tos 0x0, ttl 64, id 43962, offset 0, flags [none], proto ICMP (1), length 84)

192.168.0.3 > 10.5.32.51: ICMP echo reply, id 177, seq 1, length 64

pod internal can catch fip related icmp packets

cat 03-subnet-snat.yaml

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: snat-for-subnet-in-vpc
spec:

externalSubnet: external204
type: nat

kind: OvnSnatRule
apiVersion: kubeovn.io/v1
metadata:

name: snat-for-subnet-in-vpc
spec:

ovnEip: snat-for-subnet-in-vpc
vpcSubnet: vpc1-subnet1 # eip corresponds to the entire network segment

Alternatively, you can specify a VPC and subnet cidr on an Intranet

kind: OvnSnatRule
apiVersion: kubeovn.io/v1
metadata:

name: snat-for-subnet-in-vpc
spec:

ovnEip: snat-for-subnet-in-vpc
vpc: vpc1
v4IpCidr: 192.168.0.0/24 # VPC subnet cidr or ip address

cat 03-pod-snat.yaml

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: snat-for-pod-vpc-ip
spec:

externalSubnet: external204
type: nat

kind: OvnSnatRule
apiVersion: kubeovn.io/v1
metadata:

name: snat01
spec:

ovnEip: snat-for-pod-vpc-ip
ipName: vpc-1-busybox02.vpc1 # eip corresponds to a single pod ip

Alternatively, you can specify a VPC or Intranet ip address

kind: OvnSnatRule
apiVersion: kubeovn.io/v1
metadata:

name: snat-for-subnet-in-vpc
spec:

ovnEip: snat-for-subnet-in-vpc
vpc: vpc1
v4IpCidr: 192.168.0.4

5.7.4 3. ovn-snat

- 127/324 - 2025 Kube-OVN Team

If you want to use an additional public network, you need to explicitly specify the public network to be extended through

externalSubnet. In the above configuration, the extended public network is extra.

After the above resources are created, you can see the following resources that the snat public network feature depends on.

5.7.5 4. ovn-dnat

4.1 ovn-dnat binds a DNAT to a pod

kubectl ko nbctl show vpc1
router 87ad06fd-71d5-4ff8-a1f0-54fa3bba1a7f (vpc1)

port vpc1-vpc1-subnet1
mac: "00:00:00:ED:8E:C7"
networks: ["192.168.0.1/24"]

port vpc1-external204
mac: "00:00:00:EF:05:C7"
networks: ["10.5.204.105/24"]
gateway chassis: [7cedd14f-265b-42e5-ac17-e03e7a1f2342 276baccb-fe9c-4476-b41d-05872a94976d fd9f140c-c45d-43db-a6c0-0d4f8ea298dd]

nat 21d853b0-f7b4-40bd-9a53-31d2e2745739
external ip: "10.5.204.115"
logical ip: "192.168.0.0/24"
type: "snat"

nat da77a11f-c523-439c-b1d1-72c664196a0f
external ip: "10.5.204.116"
logical ip: "192.168.0.4"
type: "snat"

[root@pc-node-1 03-cust-vpc]# kubectl get po -A -o wide | grep busy
vpc1 vpc-1-busybox01 1/1 Running 0 3d15h 192.168.0.2 pc-node-2 <none> <none>
vpc1 vpc-1-busybox02 1/1 Running 0 17h 192.168.0.4 pc-node-1 <none> <none>
vpc1 vpc-1-busybox03 1/1 Running 0 17h 192.168.0.5 pc-node-1 <none> <none>
vpc1 vpc-1-busybox04 1/1 Running 0 17h 192.168.0.6 pc-node-3 <none> <none>
vpc1 vpc-1-busybox05 1/1 Running 0 17h 192.168.0.7 pc-node-1 <none> <none>

kubectl exec -it -n vpc1 vpc-1-busybox04 bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
[root@vpc-1-busybox04 /]#
[root@vpc-1-busybox04 /]#
[root@vpc-1-busybox04 /]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
17095: eth0@if17096: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

link/ether 00:00:00:76:94:55 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 192.168.0.6/24 brd 192.168.0.255 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:fe76:9455/64 scope link

valid_lft forever preferred_lft forever
[root@vpc-1-busybox04 /]# ping 223.5.5.5
PING 223.5.5.5 (223.5.5.5) 56(84) bytes of data.
64 bytes from 223.5.5.5: icmp_seq=1 ttl=114 time=22.2 ms
64 bytes from 223.5.5.5: icmp_seq=2 ttl=114 time=21.8 ms

[root@pc-node-1 03-cust-vpc]# kubectl exec -it -n vpc1 vpc-1-busybox02 bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl exec [POD] -- [COMMAND] instead.
[root@vpc-1-busybox02 /]#
[root@vpc-1-busybox02 /]#
[root@vpc-1-busybox02 /]#
[root@vpc-1-busybox02 /]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
1566: eth0@if1567: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

link/ether 00:00:00:0b:e9:d0 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 192.168.0.4/24 brd 192.168.0.255 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:fe0b:e9d0/64 scope link

valid_lft forever preferred_lft forever
[root@vpc-1-busybox02 /]# ping 223.5.5.5
PING 223.5.5.5 (223.5.5.5) 56(84) bytes of data.
64 bytes from 223.5.5.5: icmp_seq=2 ttl=114 time=22.7 ms
64 bytes from 223.5.5.5: icmp_seq=3 ttl=114 time=22.6 ms
64 bytes from 223.5.5.5: icmp_seq=4 ttl=114 time=22.1 ms
^C
--- 223.5.5.5 ping statistics ---
4 packets transmitted, 3 received, 25% packet loss, time 3064ms
rtt min/avg/max/mdev = 22.126/22.518/22.741/0.278 ms

the two pods can access the external network based on these two type snat resources respectively

5.7.5 4. ovn-dnat

- 128/324 - 2025 Kube-OVN Team

If you want to use an additional public network, you need to explicitly specify the public network to be extended through

externalSubnet. In the above configuration, the extended public network is extra.

The configuration of OvnDnatRule is similar to that of IptablesDnatRule.

4.2 ovn-dnat binds a DNAT to a VIP

The configuration of OvnDnatRule is similar to that of IptablesDnatRule.

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: eip-dnat
spec:

externalSubnet: underlay
type: nat

kind: OvnDnatRule
apiVersion: kubeovn.io/v1
metadata:

name: eip-dnat
spec:

ovnEip: eip-dnat
ipName: vpc-1-busybox01.vpc1 # Note that this is the name of the pod IP CRD and it is unique
protocol: tcp
internalPort: "22"
externalPort: "22"

Alternatively, you can specify a VPC or Intranet ip address

kind: OvnDnatRule
apiVersion: kubeovn.io/v1
metadata:

name: eip-dnat
spec:

ovnEip: eip-dnat
protocol: tcp
internalPort: "22"
externalPort: "22"
vpc: vpc1
v4Ip: 192.168.0.3

kubectl get oeip eip-dnat
NAME V4IP V6IP MAC TYPE READY
eip-dnat 10.5.49.4 00:00:00:4D:CE:49 dnat true

kubectl get odnat
NAME EIP PROTOCOL V4EIP V4IP INTERNALPORT EXTERNALPORT IPNAME READY
eip-dnat eip-dnat tcp 10.5.49.4 192.168.0.3 22 22 vpc-1-busybox01.vpc1 true

kind: OvnDnatRule
apiVersion: kubeovn.io/v1
metadata:

name: eip-dnat
spec:

ipType: vip # By default, Dnat is oriented towards pod IPs. Here, it is necessary to specify that it is connected to VIP resources
ovnEip: eip-dnat
ipName: test-dnat-vip
protocol: tcp
internalPort: "22"
externalPort: "22"

Alternatively, you can specify a VPC or Intranet ip address

kind: OvnDnatRule
apiVersion: kubeovn.io/v1
metadata:

name: eip-dnat
spec:

ipType: vip # By default, Dnat is oriented towards pod IPs. Here, it is necessary to specify that it is connected to VIP resources
ovnEip: eip-dnat
ipName: test-dnat-vip
protocol: tcp
internalPort: "22"
externalPort: "22"
vpc: vpc1
v4Ip: 192.168.0.4

kubectl get vip test-dnat-vip
NAME V4IP PV4IP MAC PMAC V6IP PV6IP SUBNET READY
test-dnat-vip 192.168.0.4 00:00:00:D0:C0:B5 vpc1-subnet1 true

5.7.5 4. ovn-dnat

- 129/324 - 2025 Kube-OVN Team

 PDF Slack Support

July 31, 2025

March 3, 2023

GitHub

5.7.6 Comments

kubectl get oeip eip-dnat
NAME V4IP V6IP MAC TYPE READY
eip-dnat 10.5.49.4 00:00:00:4D:CE:49 dnat true

kubectl get odnat eip-dnat
NAME EIP PROTOCOL V4EIP V4IP INTERNALPORT EXTERNALPORT IPNAME READY
eip-dnat eip-dnat tcp 10.5.49.4 192.168.0.4 22 22 test-dnat-vip true

5.7.6 Comments

- 130/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/zbb88888
https://github.com/zbb88888
https://github.com/web-flow
https://github.com/web-flow
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/gemini-code-assist-5Bbot-5D
https://github.com/gemini-code-assist-5Bbot-5D

5.8 Support OVN SNAT L3 HA Based ECMP and BFD Static Route

Custom vpc based on ovn snat after ecmp based static route hash to multiple gw node ovnext0 NICs out of the public network

Supports bfd-based high availability

Only supports hash load balancing

This functions basically the same as ovn-eip-fip-snat.md .

As for the different parts, which will be specified in the following sections, mainly including the creation of ovn-eip of lsp type

and the automatic maintenance of bfd as well as ecmp static routes based on vpc enable_bfd.

5.8.1 1. Deployment

1.1 Create the underlay public network

1.2 Default vpc enable eip_snat

1.3 Custom vpc enable eip snat fip function

The above section is exactly the same with ovn-eip-fip-snat.md.

After these functions are verified, the vpc can be switched directly to the ecmp-based bfd static route based on the following way,

or of course, switched directly back.

Before customizing vpc to use this feature, you need to provide some gateway nodes, at least 2. Note that the name of the

current implementation of ovn-eip must be consistent with the gateway node name, no automated maintenance is currently done

for this resource.

Since this scenario is currently designed for vpc ecmp out of the public network, the gateway node above will not trigger the

creation of a gateway NIC when there is no vpc enabled bfd, i.e. when there is no ovn eip (lrp) with enable bfd labeled, and will

not be able to successfully start listening to the bfd session on the other side.

•

•

graph LR

pod-->vpc-subnet-->vpc-->snat-->ecmp-->external-subnet-->gw-node1-ovnext0--> node1-external-switch
external-subnet-->gw-node2-ovnext0--> node2-external-switch
external-subnet-->gw-node3-ovnext0--> node3-external-switch

cat gw-node-eip.yaml

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: pc-node-1
spec:

externalSubnet: external204
type: lsp

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: pc-node-2
spec:

externalSubnet: external204
type: lsp

kind: OvnEip
apiVersion: kubeovn.io/v1
metadata:

name: pc-node-3
spec:

externalSubnet: external204
type: lsp

5.8 Support OVN SNAT L3 HA Based ECMP and BFD Static Route

- 131/324 - 2025 Kube-OVN Team

5.8.2 2. Custom vpc enable ecmp bfd L3 HA public network function

note:

Customize ecmp under vpc to use only static ecmp bfd routes. vpc enableBfd and subnet enableEcmp will only take effect if they

are enabled at the same time, before static ecmp bfd routes are automatically managed.

If the above configuration is turned off, it will automatically switch back to the regular default static route.

This feature is not available for the default vpc, only custom vpc is supported, the default vpc has more complex policy routing.

The enableEcmp of the subnet of the custom vpc uses only static routes, the gateway type gatewayType has no effect.

When EnableExternal is turned off in vpc, the external network cannot be passed inside vpc.

When EnableExternal is enabled on vpc, when EnableBfd is turned off, it will be based on the normal default route to the external

network and will not have high availability.

cat 01-vpc-ecmp-enable-external-bfd.yml
kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc1
spec:

namespaces:
- vpc1
enableExternal: true
enableBfd: true # bfd switch can be switched at will
#enableBfd: false

cat 02-subnet.yml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: vpc1-subnet1
spec:

cidrBlock: 192.168.0.0/24
default: false
disableGatewayCheck: false
disableInterConnection: true
enableEcmp: true # enable ecmp
gatewayNode: ""
gatewayType: distributed
#gatewayType: centralized
natOutgoing: false
private: false
protocol: IPv4
provider: ovn
vpc: vpc1
namespaces:
- vpc1

1.

2.

3.

4.

5.

6.

After the above template is applied the ovn logic layer should see the following resources
k get vpc
NAME ENABLEEXTERNAL ENABLEBFD STANDBY SUBNETS NAMESPACES
ovn-cluster true true ["external204","join","ovn-default"]
vpc1 true true true ["vpc1-subnet1"] ["vpc1"]

Default vpc does not support ENABLEBFD
Custom vpc is supported and enabled

1. bfd table created
k ko nbctl list bfd
_uuid : be7df545-2c4c-4751-878f-b3507987f050
detect_mult : 3
dst_ip : "10.5.204.121"
external_ids : {}
logical_port : vpc1-external204
min_rx : 100
min_tx : 100
options : {}
status : up

_uuid : 684c4489-5b59-4693-8d8c-3beab93f8093
detect_mult : 3
dst_ip : "10.5.204.109"
external_ids : {}
logical_port : vpc1-external204
min_rx : 100
min_tx : 100
options : {}
status : up

_uuid : f0f62077-2ae9-4e79-b4f8-a446ec6e784c
detect_mult : 3
dst_ip : "10.5.204.108"
external_ids : {}

5.8.2 2. Custom vpc enable ecmp bfd L3 HA public network function

- 132/324 - 2025 Kube-OVN Team

catch outgoing packets within the ovnext ns of a gateway node

logical_port : vpc1-external204
min_rx : 100
min_tx : 100
options : {}
status : up

Note that all statuses should normally be up

2. bfd ecmp static routes table created
k ko nbctl lr-route-list vpc1
IPv4 Routes
Route Table <main>:

192.168.0.0/24 10.5.204.108 src-ip ecmp ecmp-symmetric-reply bfd
192.168.0.0/24 10.5.204.109 src-ip ecmp ecmp-symmetric-reply bfd
192.168.0.0/24 10.5.204.121 src-ip ecmp ecmp-symmetric-reply bfd

3. Static Route Details
k ko nbctl find Logical_Router_Static_Route policy=src-ip options=ecmp_symmetric_reply="true"
_uuid : 3aacb384-d5ee-4b14-aebf-59e8c11717ba
bfd : 684c4489-5b59-4693-8d8c-3beab93f8093
external_ids : {}
ip_prefix : "192.168.0.0/24"
nexthop : "10.5.204.109"
options : {ecmp_symmetric_reply="true"}
output_port : []
policy : src-ip
route_table : ""

_uuid : 18bcc585-bc05-430b-925b-ef673c8e1aef
bfd : f0f62077-2ae9-4e79-b4f8-a446ec6e784c
external_ids : {}
ip_prefix : "192.168.0.0/24"
nexthop : "10.5.204.108"
options : {ecmp_symmetric_reply="true"}
output_port : []
policy : src-ip
route_table : ""

_uuid : 7d0a4e6b-cde0-4110-8176-fbaf19738498
bfd : be7df545-2c4c-4751-878f-b3507987f050
external_ids : {}
ip_prefix : "192.168.0.0/24"
nexthop : "10.5.204.121"
options : {ecmp_symmetric_reply="true"}
output_port : []
policy : src-ip
route_table : ""

Also, the following resources should be available at all gateway nodes

[root@pc-node-1 ~]# ip netns exec ovnext bash ip a
/usr/sbin/ip: /usr/sbin/ip: cannot execute binary file
[root@pc-node-1 ~]#
[root@pc-node-1 ~]# ip netns exec ovnext ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
1541: ovnext0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UNKNOWN group default qlen 1000

link/ether 00:00:00:ab:bd:87 brd ff:ff:ff:ff:ff:ff
inet 10.5.204.108/24 brd 10.5.204.255 scope global ovnext0

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:feab:bd87/64 scope link

valid_lft forever preferred_lft forever
[root@pc-node-1 ~]#
[root@pc-node-1 ~]# ip netns exec ovnext route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.5.204.254 0.0.0.0 UG 0 0 0 ovnext0
10.5.204.0 0.0.0.0 255.255.255.0 U 0 0 0 ovnext0

[root@pc-node-1 ~]# ip netns exec ovnext bfdd-control status
There are 1 sessions:
Session 1
id=1 local=10.5.204.108 (p) remote=10.5.204.122 state=Up

This is the other end of the lrp bfd session and one of the next hops of the lrp ecmp

[root@pc-node-1 ~]# ip netns exec ovnext ping -c1 223.5.5.5
PING 223.5.5.5 (223.5.5.5) 56(84) bytes of data.
64 bytes from 223.5.5.5: icmp_seq=1 ttl=115 time=21.6 ms

No problem to the public network

tcpdump -i ovnext0 host 223.5.5.5 -netvv
dropped privs to tcpdump

5.8.2 2. Custom vpc enable ecmp bfd L3 HA public network function

- 133/324 - 2025 Kube-OVN Team

5.8.3 3. Turn off bfd mode

In some scenarios, you may want to use a (centralized) single gateway directly out of the public network, which is the same as

the default vpc enable_eip_snat usage pattern

 PDF Slack Support

March 3, 2025

March 3, 2023

GitHub

5.8.4 Comments

tcpdump: listening on ovnext0, link-type EN10MB (Ethernet), capture size 262144 bytes
^C
0 packets captured
0 packets received by filter
0 packets dropped by kernel
[root@pc-node-1 ~]# exit
[root@pc-node-1 ~]# ssh pc-node-2
Last login: Thu Feb 23 09:21:08 2023 from 10.5.32.51
[root@pc-node-2 ~]# ip netns exec ovnext bash
[root@pc-node-2 ~]# tcpdump -i ovnext0 host 223.5.5.5 -netvv
dropped privs to tcpdump
tcpdump: listening on ovnext0, link-type EN10MB (Ethernet), capture size 262144 bytes
^C
0 packets captured
0 packets received by filter
0 packets dropped by kernel
[root@pc-node-2 ~]# exit
[root@pc-node-2 ~]# logout
Connection to pc-node-2 closed.
[root@pc-node-1 ~]# ssh pc-node-3
Last login: Thu Feb 23 08:32:41 2023 from 10.5.32.51
[root@pc-node-3 ~]# ip netns exec ovnext bash
[root@pc-node-3 ~]# tcpdump -i ovnext0 host 223.5.5.5 -netvv
dropped privs to tcpdump
tcpdump: listening on ovnext0, link-type EN10MB (Ethernet), capture size 262144 bytes
00:00:00:2d:f8:ce > 00:00:00:fd:b2:a4, ethertype IPv4 (0x0800), length 98: (tos 0x0, ttl 63, id 57978, offset 0, flags [DF], proto ICMP (1), length 84)

10.5.204.102 > 223.5.5.5: ICMP echo request, id 22, seq 71, length 64
00:00:00:fd:b2:a4 > dc:ef:80:5a:44:1a, ethertype IPv4 (0x0800), length 98: (tos 0x0, ttl 62, id 57978, offset 0, flags [DF], proto ICMP (1), length 84)

10.5.204.102 > 223.5.5.5: ICMP echo request, id 22, seq 71, length 64
^C
2 packets captured
2 packets received by filter
0 packets dropped by kernel
[root@pc-node-3 ~]#

cat 01-vpc-ecmp-enable-external-bfd.yml
kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc2
spec:

namespaces:
- vpc2
enableExternal: true
#enableBfd: true
enableBfd: false

set it false add apply

k ko nbctl lr-route-list vpc2
IPv4 Routes
Route Table <main>:

0.0.0.0/0 10.5.204.254 dst-ip

After application the route will switch back to the normal default static route
nbctl list bfd, the bfd session associated with lrp has been removed
And the opposite side of the bfd session in ovnext ns is automatically removed

5.8.3 3. Turn off bfd mode

- 134/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

5.9 VPC Peering

VPC peering provides a mechanism for bridging two VPC networks through logical routes so that workloads within two VPCs can

access each other through private addresses as if they were on the same private network, without the need for NAT forwarding

through a gateway.

5.9.1 Prerequisites

This feature is only available for customized VPCs.

To avoid route overlap the subnet CIDRs within the two VPCs cannot overlap.

Currently, only interconnection of two VPCs is supported.

5.9.2 Usage

First create two non-interconnected VPCs with one Subnet under each VPC, and the CIDRs of the Subnets do not overlap with

each other.

Add vpcPeerings and the corresponding static routes within each VPC:

1.

2.

3.

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc-1
spec: {}

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: net1
spec:

vpc: vpc-1
cidrBlock: 10.0.0.0/16

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc-2
spec: {}

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: net2
spec:

vpc: vpc-2
cidrBlock: 172.31.0.0/16

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc-1
spec:

vpcPeerings:
- remoteVpc: vpc-2

localConnectIP: 169.254.0.1/30
staticRoutes:

- cidr: 172.31.0.0/16
nextHopIP: 169.254.0.2
policy: policyDst

kind: Vpc
apiVersion: kubeovn.io/v1
metadata:

name: vpc-2
spec:

vpcPeerings:
- remoteVpc: vpc-1

localConnectIP: 169.254.0.2/30
staticRoutes:

- cidr: 10.0.0.0/16

5.9 VPC Peering

- 135/324 - 2025 Kube-OVN Team

remoteVpc : the name of another peering VPC.

localConnectIP : as the IP address and CIDR of the interconnection endpoint. Note that both IPs should belong to the same

CIDR and should not conflict with existing subnets.

cidr : CIDR of the peering Subnet.

nextHopIP : the localConnectIP on the other end of the peering VPC.

Create Pods under the two Subnets

Test the network connectivity

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

5.9.3 Comments

nextHopIP: 169.254.0.1
policy: policyDst

•

•

•

•

apiVersion: v1
kind: Pod
metadata:

annotations:
ovn.kubernetes.io/logical_switch: net1

name: vpc-1-pod
spec:

containers:
- name: vpc-1-pod

image: docker.io/library/nginx:alpine

apiVersion: v1
kind: Pod
metadata:

annotations:
ovn.kubernetes.io/logical_switch: net2

name: vpc-2-pod
spec:

containers:
- name: vpc-2-pod

image: docker.io/library/nginx:alpine

kubectl exec -it vpc-1-pod -- ping $(kubectl get pod vpc-2-pod -o jsonpath='{.status.podIP}')
PING 172.31.0.2 (172.31.0.2): 56 data bytes
64 bytes from 172.31.0.2: seq=0 ttl=62 time=0.655 ms
64 bytes from 172.31.0.2: seq=1 ttl=62 time=0.086 ms
64 bytes from 172.31.0.2: seq=2 ttl=62 time=0.098 ms
^C
--- 172.31.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.086/0.279/0.655 ms
kubectl exec -it vpc-2-pod -- ping $(kubectl get pod vpc-1-pod -o jsonpath='{.status.podIP}')
PING 10.0.0.2 (10.0.0.2): 56 data bytes
64 bytes from 10.0.0.2: seq=0 ttl=62 time=0.594 ms
64 bytes from 10.0.0.2: seq=1 ttl=62 time=0.093 ms
64 bytes from 10.0.0.2: seq=2 ttl=62 time=0.088 ms
^C
--- 10.0.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.088/0.258/0.594 ms

5.9.3 Comments

- 136/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

6. Operations

6.1 Kubectl Plugin

To facilitate daily operations and maintenance, Kube-OVN provides the kubectl plug-in tool, which allows administrators to

perform daily operations through this command. For examples: Check OVN database information and status, OVN database

backup and restore, OVS related information, tcpdump specific containers, specific link logical topology, network problem

diagnosis and performance optimization.

6.1.1 Plugin Installation

Kube-OVN installation will deploy the plugin to each node by default. If the machine that runs kubectl is not in the cluster, or if

you need to reinstall the plugin, please refer to the following steps:

Download kubectl-ko file:

Move file to $PATH :

Add executable permissions:

Check if the plugin works properly:

6.1.2 Plugin Usage

Running kubectl ko will show all the available commands and usage descriptions, as follows:

The specific functions and usage of each command are described below.

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/kubectl-ko

mv kubectl-ko /usr/local/bin/kubectl-ko

chmod +x /usr/local/bin/kubectl-ko

kubectl plugin list
The following compatible plugins are available:

/usr/local/bin/kubectl-ko

kubectl ko
kubectl ko {subcommand} [option...]
Available Subcommands:

[nb|sb] [status|kick|backup|dbstatus|restore] ovn-db operations show cluster status, kick stale server, backup database, get db consistency status or
restore ovn nb db when met 'inconsistent data' error

nbctl [ovn-nbctl options ...] invoke ovn-nbctl
sbctl [ovn-sbctl options ...] invoke ovn-sbctl
vsctl {nodeName} [ovs-vsctl options ...] invoke ovs-vsctl on the specified node
ofctl {nodeName} [ovs-ofctl options ...] invoke ovs-ofctl on the specified node
dpctl {nodeName} [ovs-dpctl options ...] invoke ovs-dpctl on the specified node
appctl {nodeName} [ovs-appctl options ...] invoke ovs-appctl on the specified node
tcpdump {namespace/podname} [tcpdump options ...] capture pod traffic
{trace|ovn-trace} ... trace ovn microflow of specific packet"

 {trace|ovn-trace} {namespace/podname} {target ip address} [target mac address] {icmp|tcp|udp} [target tcp/udp port] trace ICMP/TCP/UDP
 {trace|ovn-trace} {namespace/podname} {target ip address} [target mac address] arp {request|reply} trace ARP request/reply
 {trace|ovn-trace} {node//nodename} {target ip address} [target mac address] {icmp|tcp|udp} [target tcp/udp port] trace ICMP/TCP/UDP
 {trace|ovn-trace} {node//nodename} {target ip address} [target mac address] arp {request|reply} trace ARP request/reply
 echo " diagnose {all|node|subnet|IPPorts} [nodename|subnetName|{proto1}-{IP1}-{Port1},{proto2}-{IP2}-{Port2}] diagnose connectivity of all nodes or a
specific node or specify subnet's ds pod or IPPorts like 'tcp-172.18.0.2-53,udp-172.18.0.3-53'"
 tuning {install-fastpath|local-install-fastpath|remove-fastpath|install-stt|local-install-stt|remove-stt} {centos7|centos8}} [kernel-devel-version] deploy
kernel optimisation components to the system
 reload restart all kube-ovn components
 log {kube-ovn|ovn|ovs|linux|all} save log to ./kubectl-ko-log/
 perf [image] performance test default image is kubeovn/test:v1.12.0

6. Operations

- 137/324 - 2025 Kube-OVN Team

[nb | sb] [status | kick | backup | dbstatus | restore]

This subcommand mainly operates on OVN northbound or southbound databases, including database cluster status check,

database node offline, database backup, database storage status check and database repair.

DB CLUSTER STATUS CHECK

This command executes ovs-appctl cluster/status on the leader node of the corresponding OVN database to show the cluster

status:

If the match_index under Server has a large difference and the last msg time is long, the corresponding Server may not respond

for a long time and needs to be checked further.

DB NODES OFFLINE

This command removes a node from the OVN database and is required when a node is taken offline or replaced. The following is

an example of the cluster status from the previous command, to offline the 172.18.0.3 node:

Check the database cluster status again to confirm that the node has been removed:

DB BACKUP

This subcommand backs up the current OVN database locally and can be used for disaster recovery:

kubectl ko nb status
306b
Name: OVN_Northbound
Cluster ID: 9a87 (9a872522-3e7d-47ca-83a3-d74333e1a7ca)
Server ID: 306b (306b256b-b5e1-4eb0-be91-4ca96adf6bad)
Address: tcp:[172.18.0.2]:6643
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 280309 ms ago, reason: timeout
Last Election won: 280309 ms ago
Election timer: 5000
Log: [139, 139]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-8723 ->8723 <-85d6 ->85d6
Disconnections: 0
Servers:

85d6 (85d6 at tcp:[172.18.0.4]:6643) next_index=139 match_index=138 last msg 763 ms ago
8723 (8723 at tcp:[172.18.0.3]:6643) next_index=139 match_index=138 last msg 763 ms ago
306b (306b at tcp:[172.18.0.2]:6643) (self) next_index=2 match_index=138

status: ok

kubectl ko nb kick 8723
started removal

kubectl ko nb status
306b
Name: OVN_Northbound
Cluster ID: 9a87 (9a872522-3e7d-47ca-83a3-d74333e1a7ca)
Server ID: 306b (306b256b-b5e1-4eb0-be91-4ca96adf6bad)
Address: tcp:[172.18.0.2]:6643
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 324356 ms ago, reason: timeout
Last Election won: 324356 ms ago
Election timer: 5000
Log: [140, 140]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-85d6 ->85d6
Disconnections: 2
Servers:

85d6 (85d6 at tcp:[172.18.0.4]:6643) next_index=140 match_index=139 last msg 848 ms ago
306b (306b at tcp:[172.18.0.2]:6643) (self) next_index=2 match_index=139

status: ok

kubectl ko nb backup
tar: Removing leading `/' from member names
backup ovn-nb db to /root/ovnnb_db.060223191654183154.backup

6.1.2 Plugin Usage

- 138/324 - 2025 Kube-OVN Team

DATABASE STORAGE STATUS CHECK

This command is used to check if the database file is corrupt:

If error happens, inconsistent data is displayed and needs to be fixed with the following command.

DATABASE REPAIR

If the database status goes to inconsistent data , this command can be used to repair:

[nbctl | sbctl] [options ...]

This subcommand executes the ovn-nbctl and ovn-sbctl commands directly into the leader node of the OVN northbound or

southbound database. For more detailed usage of this command, please refer to the official documentation of the upstream OVN

ovn-nbctl(8) ovn-sbctl(8).

kubectl ko nb dbstatus
status: ok

kubectl ko nb restore
deployment.apps/ovn-central scaled
ovn-central original replicas is 3
first nodeIP is 172.18.0.5
ovs-ovn pod on node 172.18.0.5 is ovs-ovn-8jxv9
ovs-ovn pod on node 172.18.0.3 is ovs-ovn-sjzb6
ovs-ovn pod on node 172.18.0.4 is ovs-ovn-t87zk
backup nb db file
restore nb db file, operate in pod ovs-ovn-8jxv9
deployment.apps/ovn-central scaled
finish restore nb db file and ovn-central replicas
recreate ovs-ovn pods
pod "ovs-ovn-8jxv9" deleted
pod "ovs-ovn-sjzb6" deleted
pod "ovs-ovn-t87zk" deleted

kubectl ko nbctl show
switch c7cd17e8-ceee-4a91-9bb3-e5a313fe1ece (snat)

port snat-ovn-cluster
type: router
router-port: ovn-cluster-snat

switch 20e0c6d0-023a-4756-aec5-200e0c60f95d (join)
port node-liumengxin-ovn3-192.168.137.178

addresses: ["00:00:00:64:FF:A8 100.64.0.4"]
port node-liumengxin-ovn1-192.168.137.176

addresses: ["00:00:00:AF:98:62 100.64.0.2"]
port node-liumengxin-ovn2-192.168.137.177

addresses: ["00:00:00:D9:58:B8 100.64.0.3"]
port join-ovn-cluster

type: router
router-port: ovn-cluster-join

switch 0191705c-f827-427b-9de3-3c3b7d971ba5 (central)
port central-ovn-cluster

type: router
router-port: ovn-cluster-central

switch 2a45ff05-388d-4f85-9daf-e6fccd5833dc (ovn-default)
port alertmanager-main-0.monitoring

addresses: ["00:00:00:6C:DF:A3 10.16.0.19"]
port kube-state-metrics-5d6885d89-4nf8h.monitoring

addresses: ["00:00:00:6F:02:1C 10.16.0.15"]
port fake-kubelet-67c55dfd89-pv86k.kube-system

addresses: ["00:00:00:5C:12:E8 10.16.19.177"]
port ovn-default-ovn-cluster

type: router
router-port: ovn-cluster-ovn-default

router 212f73dd-d63d-4d72-864b-a537e9afbee1 (ovn-cluster)
port ovn-cluster-snat

mac: "00:00:00:7A:82:8F"
networks: ["172.22.0.1/16"]

port ovn-cluster-join
mac: "00:00:00:F8:18:5A"
networks: ["100.64.0.1/16"]

port ovn-cluster-central
mac: "00:00:00:4D:8C:F5"
networks: ["192.101.0.1/16"]

port ovn-cluster-ovn-default
mac: "00:00:00:A3:F8:18"
networks: ["10.16.0.1/16"]

6.1.2 Plugin Usage

- 139/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man8/ovn-nbctl.8.html
https://man7.org/linux/man-pages/man8/ovn-sbctl.8.html

vsctl {nodeName} [options ...]

This command will go to the ovs-ovn container on the corresponding nodeName and execute the corresponding ovs-vsctl

command to query and configure vswitchd . For more detailed usage of this command, please refer to the official documentation

of the upstream OVS ovs-vsctl(8).

ofctl {nodeName} [options ...]

This command will go to the ovs-ovn container on the corresponding nodeName and execute the corresponding ovs-ofctl

command to query or manage OpenFlow. For more detailed usage of this command, please refer to the official documentation of

the upstream OVS ovs-ofctl(8).

dpctl {nodeName} [options ...]

This command will go to the ovs-ovn container on the corresponding nodeName and execute the corresponding ovs-dpctl

command to query or manage the OVS datapath. For more detailed usage of this command, please refer to the official

documentation of the upstream OVS ovs-dpctl(8).

kubectl ko vsctl kube-ovn-01 show
0d4c4675-c9cc-440a-8c1a-878e17f81b88

Bridge br-int
fail_mode: secure
datapath_type: system
Port a2c1a8a8b83a_h

Interface a2c1a8a8b83a_h
Port "4fa5c4cbb1a5_h"

Interface "4fa5c4cbb1a5_h"
Port ovn-eef07d-0

Interface ovn-eef07d-0
type: stt
options: {csum="true", key=flow, remote_ip="192.168.137.178"}

Port ovn0
Interface ovn0

type: internal
Port mirror0

Interface mirror0
type: internal

Port ovn-efa253-0
Interface ovn-efa253-0

type: stt
options: {csum="true", key=flow, remote_ip="192.168.137.177"}

Port br-int
Interface br-int

type: internal
ovs_version: "2.17.2"

kubectl ko ofctl kube-ovn-01 dump-flows br-int
NXST_FLOW reply (xid=0x4): flags=[more]
cookie=0xcf3429e6, duration=671791.432s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=100,in_port=2 actions=load:0x4-

>NXM_NX_REG13[],load:0x9->NXM_NX_REG11[],load:0xb->NXM_NX_REG12[],load:0x4->OXM_OF_METADATA[],load:0x1->NXM_NX_REG14[],resubmit(,8)
cookie=0xc91413c6, duration=671791.431s, table=0, n_packets=907489, n_bytes=99978275, idle_age=0, hard_age=65534, priority=100,in_port=7 actions=load:0x1-

>NXM_NX_REG13[],load:0x9->NXM_NX_REG11[],load:0xb->NXM_NX_REG12[],load:0x4->OXM_OF_METADATA[],load:0x4->NXM_NX_REG14[],resubmit(,8)
cookie=0xf180459, duration=671791.431s, table=0, n_packets=17348582, n_bytes=2667811214, idle_age=0, hard_age=65534, priority=100,in_port=6317 actions=load:

0xa->NXM_NX_REG13[],load:0x9->NXM_NX_REG11[],load:0xb->NXM_NX_REG12[],load:0x4->OXM_OF_METADATA[],load:0x9->NXM_NX_REG14[],resubmit(,8)
cookie=0x7806dd90, duration=671791.431s, table=0, n_packets=3235428, n_bytes=833821312, idle_age=0, hard_age=65534, priority=100,in_port=1 actions=load:0xd-

>NXM_NX_REG13[],load:0x9->NXM_NX_REG11[],load:0xb->NXM_NX_REG12[],load:0x4->OXM_OF_METADATA[],load:0x3->NXM_NX_REG14[],resubmit(,8)
...

kubectl ko dpctl kube-ovn-01 show
system@ovs-system:

lookups: hit:350805055 missed:21983648 lost:73
flows: 105
masks: hit:1970748791 total:22 hit/pkt:5.29
port 0: ovs-system (internal)
port 1: ovn0 (internal)
port 2: mirror0 (internal)
port 3: br-int (internal)
port 4: stt_sys_7471 (stt: packet_type=ptap)
port 5: eeb4d9e51b5d_h
port 6: a2c1a8a8b83a_h
port 7: 4fa5c4cbb1a5_h

6.1.2 Plugin Usage

- 140/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man8/ovs-vsctl.8.html
https://man7.org/linux/man-pages/man8/ovs-ofctl.8.html
https://man7.org/linux/man-pages/man8/ovs-dpctl.8.html

appctl {nodeName} [options ...]

This command will enter the ovs-ovn container on the corresponding nodeName and execute the corresponding ovs-appctl

command to operate the associated daemon process. For more detailed usage of this command, please refer to the official

documentation of the upstream OVS ovs-appctl(8).

tcpdump {namespace/podname} [tcpdump options ...]

This command will enter the kube-ovn-cni container on the machine where namespace/podname is located, and run tcpdump to

capture the traffic on the veth NIC of the corresponding container, which can be used to troubleshoot network-related problems.

trace [arguments ...]

This command will print the OVN logical flow table and the final Openflow flow table when the Pod/node accesses an address

through a specific protocol, so that it make locate flow table related problems during development or troubleshooting much easy.

Supported commands:

Example:

kubectl ko appctl kube-ovn-01 vlog/list
console syslog file
------- ------ ------

backtrace OFF ERR INFO
bfd OFF ERR INFO
bond OFF ERR INFO
bridge OFF ERR INFO
bundle OFF ERR INFO
bundles OFF ERR INFO
...

kubectl ko tcpdump default/ds1-l6n7p icmp
+ kubectl exec -it kube-ovn-cni-wlg4s -n kube-ovn -- tcpdump -nn -i d7176fe7b4e0_h icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on d7176fe7b4e0_h, link-type EN10MB (Ethernet), capture size 262144 bytes
06:52:36.619688 IP 100.64.0.3 > 10.16.0.4: ICMP echo request, id 2, seq 1, length 64
06:52:36.619746 IP 10.16.0.4 > 100.64.0.3: ICMP echo reply, id 2, seq 1, length 64
06:52:37.619588 IP 100.64.0.3 > 10.16.0.4: ICMP echo request, id 2, seq 2, length 64
06:52:37.619630 IP 10.16.0.4 > 100.64.0.3: ICMP echo reply, id 2, seq 2, length 64
06:52:38.619933 IP 100.64.0.3 > 10.16.0.4: ICMP echo request, id 2, seq 3, length 64
06:52:38.619973 IP 10.16.0.4 > 100.64.0.3: ICMP echo reply, id 2, seq 3, length 64

kubectl ko trace {namespace/podname} {target ip address} [target mac address] {icmp|tcp|udp} [target tcp/udp port]
kubectl ko trace {namespace/podname} {target ip address} [target mac address] arp {request|reply}
kubectl ko trace {node//nodename} {target ip address} [target mac address] {icmp|tcp|udp} [target tcp/udp port]
kubectl ko trace {node//nodename} {target ip address} [target mac address] arp {request|reply}

kubectl ko trace default/ds1-l6n7p 8.8.8.8 icmp
+ kubectl exec ovn-central-5bc494cb5-np9hm -n kube-ovn -- ovn-trace --ct=new ovn-default 'inport == "ds1-l6n7p.default" && ip.ttl == 64 && icmp && eth.src ==
0a:00:00:10:00:05 && ip4.src == 10.16.0.4 && eth.dst == 00:00:00:B8:CA:43 && ip4.dst == 8.8.8.8'
icmp,reg14=0xf,vlan_tci=0x0000,dl_src=0a:00:00:10:00:05,dl_dst=00:00:00:b8:ca:
43,nw_src=10.16.0.4,nw_dst=8.8.8.8,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=0,icmp_code=0

ingress(dp="ovn-default", inport="ds1-l6n7p.default")

0. ls_in_port_sec_l2 (ovn-northd.c:4143): inport == "ds1-l6n7p.default" && eth.src == {0a:00:00:10:00:05}, priority 50, uuid 39453393

next;
1. ls_in_port_sec_ip (ovn-northd.c:2898): inport == "ds1-l6n7p.default" && eth.src == 0a:00:00:10:00:05 && ip4.src == {10.16.0.4}, priority 90, uuid 81bcd485

next;
3. ls_in_pre_acl (ovn-northd.c:3269): ip, priority 100, uuid 7b4f4971

reg0[0] = 1;
next;

5. ls_in_pre_stateful (ovn-northd.c:3396): reg0[0] == 1, priority 100, uuid 36cdd577
ct_next;

ct_next(ct_state=new|trk)

6. ls_in_acl (ovn-northd.c:3759): ip && (!ct.est || (ct.est && ct_label.blocked == 1)), priority 1, uuid 7608af5b

reg0[1] = 1;
next;

10. ls_in_stateful (ovn-northd.c:3995): reg0[1] == 1, priority 100, uuid 2aba1b90
ct_commit(ct_label=0/0x1);
next;

16. ls_in_l2_lkup (ovn-northd.c:4470): eth.dst == 00:00:00:b8:ca:43, priority 50, uuid 5c9c3c9f
outport = "ovn-default-ovn-cluster";
output;

...

6.1.2 Plugin Usage

- 141/324 - 2025 Kube-OVN Team

https://man7.org/linux/man-pages/man8/ovs-appctl.8.html

If the trace object is a virtual machine running in Underlay network, additional parameters is needed to specify the destination

Mac address.

diagnose {all|node|subnet|IPPorts} [nodename|subnetName|{proto1}-{IP1}-{Port1},{proto2}-{IP2}-{Port2}]

Diagnose the status of cluster network components and go to the corresponding node's kube-ovn-pinger to detect connectivity

and network latency from the current node to other nodes and critical services.

kubectl ko trace default/virt-handler-7lvml 8.8.8.8 82:7c:9f:83:8c:01 icmp

kubectl ko diagnose all
switch c7cd17e8-ceee-4a91-9bb3-e5a313fe1ece (snat)

port snat-ovn-cluster
type: router
router-port: ovn-cluster-snat

switch 20e0c6d0-023a-4756-aec5-200e0c60f95d (join)
port node-liumengxin-ovn3-192.168.137.178

addresses: ["00:00:00:64:FF:A8 100.64.0.4"]
port node-liumengxin-ovn1-192.168.137.176

addresses: ["00:00:00:AF:98:62 100.64.0.2"]
port join-ovn-cluster

type: router
router-port: ovn-cluster-join

switch 0191705c-f827-427b-9de3-3c3b7d971ba5 (central)
port central-ovn-cluster

type: router
router-port: ovn-cluster-central

switch 2a45ff05-388d-4f85-9daf-e6fccd5833dc (ovn-default)
port ovn-default-ovn-cluster

type: router
router-port: ovn-cluster-ovn-default

port prometheus-k8s-1.monitoring
addresses: ["00:00:00:AA:37:DF 10.16.0.23"]

router 212f73dd-d63d-4d72-864b-a537e9afbee1 (ovn-cluster)
port ovn-cluster-snat

mac: "00:00:00:7A:82:8F"
networks: ["172.22.0.1/16"]

port ovn-cluster-join
mac: "00:00:00:F8:18:5A"
networks: ["100.64.0.1/16"]

port ovn-cluster-central
mac: "00:00:00:4D:8C:F5"
networks: ["192.101.0.1/16"]

port ovn-cluster-ovn-default
mac: "00:00:00:A3:F8:18"
networks: ["10.16.0.1/16"]

Routing Policies
31000 ip4.dst == 10.16.0.0/16 allow
31000 ip4.dst == 100.64.0.0/16 allow
30000 ip4.dst == 192.168.137.177 reroute 100.64.0.3
30000 ip4.dst == 192.168.137.178 reroute 100.64.0.4
29000 ip4.src == $ovn.default.fake.6_ip4 reroute 100.64.0.22
29000 ip4.src == $ovn.default.fake.7_ip4 reroute 100.64.0.21
29000 ip4.src == $ovn.default.fake.8_ip4 reroute 100.64.0.23
29000 ip4.src == $ovn.default.liumengxin.ovn3.192.168.137.178_ip4 reroute 100.64.0.4
20000 ip4.src == $ovn.default.liumengxin.ovn1.192.168.137.176_ip4 && ip4.dst != $ovn.cluster.overlay.subnets.IPv4 reroute 100.

64.0.2
20000 ip4.src == $ovn.default.liumengxin.ovn2.192.168.137.177_ip4 && ip4.dst != $ovn.cluster.overlay.subnets.IPv4 reroute 100.

64.0.3
20000 ip4.src == $ovn.default.liumengxin.ovn3.192.168.137.178_ip4 && ip4.dst != $ovn.cluster.overlay.subnets.IPv4 reroute 100.

64.0.4
IPv4 Routes
Route Table <main>:

0.0.0.0/0 100.64.0.1 dst-ip
UUID LB PROTO VIP IPs
e9bcfd9d-793e-4431-9073-6dec96b75d71 cluster-tcp-load tcp 10.100.209.132:10660 192.168.137.176:10660

tcp 10.101.239.192:6641 192.168.137.177:6641
tcp 10.101.240.101:3000 10.16.0.7:3000
tcp 10.103.184.186:6642 192.168.137.177:6642

35d2b7a5-e3a7-485a-a4b7-b4970eb0e63b cluster-tcp-sess tcp 10.100.158.128:8080 10.16.0.10:8080,10.16.0.5:8080,10.16.63.30:8080
tcp 10.107.26.215:8080 10.16.0.19:8080,10.16.0.20:8080,10.16.0.21:8080
tcp 10.107.26.215:9093 10.16.0.19:9093,10.16.0.20:9093,10.16.0.21:9093
tcp 10.98.187.99:8080 10.16.0.22:8080,10.16.0.23:8080
tcp 10.98.187.99:9090 10.16.0.22:9090,10.16.0.23:9090

f43303e4-89aa-4d3e-a3dc-278a552fe27b cluster-udp-load udp 10.96.0.10:53 10.16.0.4:53,10.16.0.9:53
_uuid : 06776304-5a96-43ed-90c4-c4854c251699
addresses : []
external_ids : {vendor=kube-ovn}
name : node_liumengxin_ovn2_192.168.137.177_underlay_v6

_uuid : 62690625-87d5-491c-8675-9fd83b1f433c
addresses : []
external_ids : {vendor=kube-ovn}
name : node_liumengxin_ovn1_192.168.137.176_underlay_v6

_uuid : b03a9bae-94d5-4562-b34c-b5f6198e180b
addresses : ["10.16.0.0/16", "100.64.0.0/16", "172.22.0.0/16", "192.101.0.0/16"]
external_ids : {vendor=kube-ovn}

6.1.2 Plugin Usage

- 142/324 - 2025 Kube-OVN Team

name : ovn.cluster.overlay.subnets.IPv4

_uuid : e1056f3a-24cc-4666-8a91-75ee6c3c2426
addresses : []
external_ids : {vendor=kube-ovn}
name : ovn.cluster.overlay.subnets.IPv6

_uuid : 3e5d5fff-e670-47b2-a2f5-a39f4698a8c5
addresses : []
external_ids : {vendor=kube-ovn}
name : node_liumengxin_ovn3_192.168.137.178_underlay_v6
_uuid : 2d85dbdc-d0db-4abe-b19e-cc806d32b492
action : drop
direction : from-lport
external_ids : {}
label : 0
log : false
match : "inport==@ovn.sg.kubeovn_deny_all && ip"
meter : []
name : []
options : {}
priority : 2003
severity : []

_uuid : de790cc8-f155-405f-bb32-5a51f30c545f
action : drop
direction : to-lport
external_ids : {}
label : 0
log : false
match : "outport==@ovn.sg.kubeovn_deny_all && ip"
meter : []
name : []
options : {}
priority : 2003
severity : []
Chassis "e15ed4d4-1780-4d50-b09e-ea8372ed48b8"

hostname: liumengxin-ovn1-192.168.137.176
Encap stt

ip: "192.168.137.176"
options: {csum="true"}

Port_Binding node-liumengxin-ovn1-192.168.137.176
Port_Binding perf-6vxkn.default
Port_Binding kube-state-metrics-5d6885d89-4nf8h.monitoring
Port_Binding alertmanager-main-0.monitoring
Port_Binding kube-ovn-pinger-6ftdf.kube-system
Port_Binding fake-kubelet-67c55dfd89-pv86k.kube-system
Port_Binding prometheus-k8s-0.monitoring

Chassis "eef07da1-f8ad-4775-b14d-bd6a3b4eb0d5"
hostname: liumengxin-ovn3-192.168.137.178
Encap stt

ip: "192.168.137.178"
options: {csum="true"}

Port_Binding kube-ovn-pinger-7twb4.kube-system
Port_Binding prometheus-adapter-86df476d87-rl88g.monitoring
Port_Binding prometheus-k8s-1.monitoring
Port_Binding node-liumengxin-ovn3-192.168.137.178
Port_Binding perf-ff475.default
Port_Binding alertmanager-main-1.monitoring
Port_Binding blackbox-exporter-676d976865-tvsjd.monitoring

Chassis "efa253c9-494d-4719-83ae-b48ab0f11c03"
hostname: liumengxin-ovn2-192.168.137.177
Encap stt

ip: "192.168.137.177"
options: {csum="true"}

Port_Binding grafana-6c4c6b8fb7-pzd2c.monitoring
Port_Binding node-liumengxin-ovn2-192.168.137.177
Port_Binding alertmanager-main-2.monitoring
Port_Binding coredns-6789c94dd8-9jqsz.kube-system
Port_Binding coredns-6789c94dd8-25d4r.kube-system
Port_Binding prometheus-operator-7bbc99fc8b-wgjm4.monitoring
Port_Binding prometheus-adapter-86df476d87-gdxmc.monitoring
Port_Binding perf-fjnws.default
Port_Binding kube-ovn-pinger-vh2xg.kube-system

ds kube-proxy ready
kube-proxy ready
deployment ovn-central ready
deployment kube-ovn-controller ready
ds kube-ovn-cni ready
ds ovs-ovn ready
deployment coredns ready
ovn-nb leader check ok
ovn-sb leader check ok
ovn-northd leader check ok
kube-ovn-controller recent log

start to diagnose node liumengxin-ovn1-192.168.137.176
ovn-controller log:
2022-06-03T00:56:44.897Z|16722|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T01:06:44.912Z|16723|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T01:16:44.925Z|16724|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T01:26:44.936Z|16725|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T01:36:44.959Z|16726|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T01:46:44.974Z|16727|inc_proc_eng|INFO|User triggered force recompute.

6.1.2 Plugin Usage

- 143/324 - 2025 Kube-OVN Team

2022-06-03T01:56:44.988Z|16728|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T02:06:45.001Z|16729|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T02:16:45.025Z|16730|inc_proc_eng|INFO|User triggered force recompute.
2022-06-03T02:26:45.040Z|16731|inc_proc_eng|INFO|User triggered force recompute.

ovs-vswitchd log:
2022-06-02T23:03:00.137Z|00079|dpif(handler1)|WARN|system@ovs-system: execute ct(commit,zone=14,label=0/0x1,nat(src)),8 failed (Invalid argument) on packet
icmp,vlan_tci=0x0000,dl_src=00:00:00:f8:07:c8,dl_dst=00:00:00:fa:1e:50,nw_src=10.16.0.5,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
icmp_csum:f9d1
with metadata skb_priority(0),tunnel(tun_id=0x160017000004,src=192.168.137.177,dst=192.168.137.176,ttl=64,tp_src=38881,tp_dst=7471,flags(csum|

key)),skb_mark(0),ct_state(0x21),ct_zone(0xe),ct_tuple4(src=10.16.0.5,dst=10.16.0.10,proto=1,tp_src=8,tp_dst=0),in_port(4) mtu 0
2022-06-02T23:23:31.840Z|00080|dpif(handler1)|WARN|system@ovs-system: execute ct(commit,zone=14,label=0/0x1,nat(src)),8 failed (Invalid argument) on packet
icmp,vlan_tci=0x0000,dl_src=00:00:00:f8:07:c8,dl_dst=00:00:00:fa:1e:50,nw_src=10.16.0.5,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
icmp_csum:15b2
with metadata skb_priority(0),tunnel(tun_id=0x160017000004,src=192.168.137.177,dst=192.168.137.176,ttl=64,tp_src=38881,tp_dst=7471,flags(csum|

key)),skb_mark(0),ct_state(0x21),ct_zone(0xe),ct_tuple4(src=10.16.0.5,dst=10.16.0.10,proto=1,tp_src=8,tp_dst=0),in_port(4) mtu 0
2022-06-03T00:09:15.659Z|00081|dpif(handler1)|WARN|system@ovs-system: execute ct(commit,zone=14,label=0/0x1,nat(src)),8 failed (Invalid argument) on packet
icmp,vlan_tci=0x0000,dl_src=00:00:00:dc:e3:63,dl_dst=00:00:00:fa:1e:50,nw_src=10.16.63.30,nw_dst=10.
16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0 icmp_csum:e5a5
with metadata skb_priority(0),tunnel(tun_id=0x150017000004,src=192.168.137.178,dst=192.168.137.176,ttl=64,tp_src=9239,tp_dst=7471,flags(csum|

key)),skb_mark(0),ct_state(0x21),ct_zone(0xe),ct_tuple4(src=10.16.63.30,dst=10.16.0.10,proto=1,tp_src=8,tp_dst=0),in_port(4) mtu 0
2022-06-03T00:30:13.409Z|00064|dpif(handler2)|WARN|system@ovs-system: execute ct(commit,zone=14,label=0/0x1,nat(src)),8 failed (Invalid argument) on packet
icmp,vlan_tci=0x0000,dl_src=00:00:00:f8:07:c8,dl_dst=00:00:00:fa:1e:50,nw_src=10.16.0.5,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
icmp_csum:6b4a
with metadata skb_priority(0),tunnel(tun_id=0x160017000004,src=192.168.137.177,dst=192.168.137.176,ttl=64,tp_src=38881,tp_dst=7471,flags(csum|

key)),skb_mark(0),ct_state(0x21),ct_zone(0xe),ct_tuple4(src=10.16.0.5,dst=10.16.0.10,proto=1,tp_src=8,tp_dst=0),in_port(4) mtu 0
2022-06-03T02:02:33.832Z|00082|dpif(handler1)|WARN|system@ovs-system: execute ct(commit,zone=14,label=0/0x1,nat(src)),8 failed (Invalid argument) on packet
icmp,vlan_tci=0x0000,dl_src=00:00:00:f8:07:c8,dl_dst=00:00:00:fa:1e:50,nw_src=10.16.0.5,nw_dst=10.16.0.10,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
icmp_csum:a819
with metadata skb_priority(0),tunnel(tun_id=0x160017000004,src=192.168.137.177,dst=192.168.137.176,ttl=64,tp_src=38881,tp_dst=7471,flags(csum|

key)),skb_mark(0),ct_state(0x21),ct_zone(0xe),ct_tuple4(src=10.16.0.5,dst=10.16.0.10,proto=1,tp_src=8,tp_dst=0),in_port(4) mtu 0

ovs-vsctl show results:
0d4c4675-c9cc-440a-8c1a-878e17f81b88

Bridge br-int
fail_mode: secure
datapath_type: system
Port a2c1a8a8b83a_h

Interface a2c1a8a8b83a_h
Port "4fa5c4cbb1a5_h"

Interface "4fa5c4cbb1a5_h"
Port ovn-eef07d-0

Interface ovn-eef07d-0
type: stt
options: {csum="true", key=flow, remote_ip="192.168.137.178"}

Port ovn0
Interface ovn0

type: internal
Port "04d03360e9a0_h"

Interface "04d03360e9a0_h"
Port eeb4d9e51b5d_h

Interface eeb4d9e51b5d_h
Port mirror0

Interface mirror0
type: internal

Port "8e5d887ccd80_h"
Interface "8e5d887ccd80_h"

Port ovn-efa253-0
Interface ovn-efa253-0

type: stt
options: {csum="true", key=flow, remote_ip="192.168.137.177"}

Port "17512d5be1f1_h"
Interface "17512d5be1f1_h"

Port br-int
Interface br-int

type: internal
ovs_version: "2.17.2"

pinger diagnose results:
I0603 10:35:04.349404 17619 pinger.go:19]

Kube-OVN:

Version: v1.14.4
Build: 2022-04-24_08:02:50
Commit: git-73f9d15
Go Version: go1.17.8
Arch: amd64

I0603 10:35:04.376797 17619 config.go:166] pinger config is &{KubeConfigFile: KubeClient:0xc000493380 Port:8080 DaemonSetNamespace:kube-system
DaemonSetName:kube-ovn-pinger Interval:5 Mode:job ExitCode:0 InternalDNS:kubernetes.default ExternalDNS: NodeName:liumengxin-ovn1-192.168.137.176 HostIP:
192.168.137.176 PodName:kube-ovn-pinger-6ftdf PodIP:10.16.0.10 PodProtocols:[IPv4] ExternalAddress: NetworkMode:kube-ovn PollTimeout:2 PollInterval:15
SystemRunDir:/var/run/openvswitch DatabaseVswitchName:Open_vSwitch DatabaseVswitchSocketRemote:unix:/var/run/openvswitch/db.sock DatabaseVswitchFileDataPath:/
etc/openvswitch/conf.db DatabaseVswitchFileLogPath:/var/log/openvswitch/ovsdb-server.log DatabaseVswitchFilePidPath:/var/run/openvswitch/ovsdb-server.pid
DatabaseVswitchFileSystemIDPath:/etc/openvswitch/system-id.conf ServiceVswitchdFileLogPath:/var/log/openvswitch/ovs-vswitchd.log ServiceVswitchdFilePidPath:/
var/run/openvswitch/ovs-vswitchd.pid ServiceOvnControllerFileLogPath:/var/log/ovn/ovn-controller.log ServiceOvnControllerFilePidPath:/var/run/ovn/ovn-
controller.pid}
I0603 10:35:04.449166 17619 exporter.go:75] liumengxin-ovn1-192.168.137.176: exporter connect successfully
I0603 10:35:04.554011 17619 ovn.go:21] ovs-vswitchd and ovsdb are up
I0603 10:35:04.651293 17619 ovn.go:33] ovn_controller is up
I0603 10:35:04.651342 17619 ovn.go:39] start to check port binding
I0603 10:35:04.749613 17619 ovn.go:135] chassis id is 1d7f3d6c-eec5-4b3c-adca-2969d9cdfd80
I0603 10:35:04.763487 17619 ovn.go:49] port in sb is [node-liumengxin-ovn1-192.168.137.176 perf-6vxkn.default kube-state-metrics-5d6885d89-4nf8h.monitoring
alertmanager-main-0.monitoring kube-ovn-pinger-6ftdf.kube-system fake-kubelet-67c55dfd89-pv86k.kube-system prometheus-k8s-0.monitoring]
I0603 10:35:04.763583 17619 ovn.go:61] ovs and ovn-sb binding check passed

6.1.2 Plugin Usage

- 144/324 - 2025 Kube-OVN Team

If the target of diagnose is specified as subnet, the script will create a daemonset on the subnet, and kube-ovn-pinger will detect

the connectivity and network delay of all pods in this daemonset, and automatically destroy the daemonset after the test.

If the target of diagnose is specified as IPPorts, the script will let each kube-ovn-pinger pod detect whether the target protocol,

IP, and Port are reachable.

tuning {install-fastpath|local-install-fastpath|remove-fastpath|install-stt|local-install-stt|remove-stt} {centos7|centos8}} [kernel-devel-version]

This command performs performance tuning related operations, please refer to Performance Tuning.

reload

This command restarts all Kube-OVN related components:

log

Using this command will capture the logs of Kube-OVN, OVN, Open vSwitch on all nodes of kube-ovn and some debug

information commonly used in linux.

The directory is as follows:

I0603 10:35:05.049309 17619 ping.go:259] start to check apiserver connectivity
I0603 10:35:05.053666 17619 ping.go:268] connect to apiserver success in 4.27ms
I0603 10:35:05.053786 17619 ping.go:129] start to check pod connectivity
I0603 10:35:05.249590 17619 ping.go:159] ping pod: kube-ovn-pinger-6ftdf 10.16.0.10, count: 3, loss count 0, average rtt 16.30ms
I0603 10:35:05.354135 17619 ping.go:159] ping pod: kube-ovn-pinger-7twb4 10.16.63.30, count: 3, loss count 0, average rtt 1.81ms
I0603 10:35:05.458460 17619 ping.go:159] ping pod: kube-ovn-pinger-vh2xg 10.16.0.5, count: 3, loss count 0, average rtt 1.92ms
I0603 10:35:05.458523 17619 ping.go:83] start to check node connectivity

kubectl ko reload
pod "ovn-central-8684dd94bd-vzgcr" deleted
Waiting for deployment "ovn-central" rollout to finish: 0 of 1 updated replicas are available...
deployment "ovn-central" successfully rolled out
pod "ovs-ovn-bsnvz" deleted
pod "ovs-ovn-m9b98" deleted
pod "kube-ovn-controller-8459db5ff4-64c62" deleted
Waiting for deployment "kube-ovn-controller" rollout to finish: 0 of 1 updated replicas are available...
deployment "kube-ovn-controller" successfully rolled out
pod "kube-ovn-cni-2klnh" deleted
pod "kube-ovn-cni-t2jz4" deleted
Waiting for daemon set "kube-ovn-cni" rollout to finish: 0 of 2 updated pods are available...
Waiting for daemon set "kube-ovn-cni" rollout to finish: 1 of 2 updated pods are available...
daemon set "kube-ovn-cni" successfully rolled out
pod "kube-ovn-pinger-ln72z" deleted
pod "kube-ovn-pinger-w8lrk" deleted
Waiting for daemon set "kube-ovn-pinger" rollout to finish: 0 of 2 updated pods are available...
Waiting for daemon set "kube-ovn-pinger" rollout to finish: 1 of 2 updated pods are available...
daemon set "kube-ovn-pinger" successfully rolled out
pod "kube-ovn-monitor-7fb67d5488-7q6zb" deleted
Waiting for deployment "kube-ovn-monitor" rollout to finish: 0 of 1 updated replicas are available...
deployment "kube-ovn-monitor" successfully rolled out

kubectl ko log all
Collecting kube-ovn logging files
Collecting ovn logging files
Collecting openvswitch logging files
Collecting linux dmesg files
Collecting linux iptables-legacy files
Collecting linux iptables-nft files
Collecting linux route files
Collecting linux link files
Collecting linux neigh files
Collecting linux memory files
Collecting linux top files
Collecting linux sysctl files
Collecting linux netstat files
Collecting linux addr files
Collecting linux ipset files
Collecting linux tcp files
Collected files have been saved in the directory /root/kubectl-ko-log

tree kubectl-ko-log/
kubectl-ko-log/
|-- kube-ovn-control-plane
| |-- kube-ovn
| | |-- kube-ovn-cni.log
| | |-- kube-ovn-monitor.log
| | `-- kube-ovn-pinger.log

6.1.2 Plugin Usage

- 145/324 - 2025 Kube-OVN Team

perf [image]

This command will test some performance indicators of Kube-OVN as follows:

The performance indicators of the container network;

Hostnetwork network performance indicators;

Container network multicast packet performance indicators;

Time required for OVN-NB, OVN-SB, and OVN-Northd leader deletion recovery. The parameter image is used to specify the image

used by the performance test pod. By default, it is kubeovn/test:v1.12.0 . This parameter is mainly set for offline scenarios, and the

image name may change when the image is pulled to the intranet environment.

| |-- linux
| | |-- addr.log
| | |-- dmesg.log
| | |-- ipset.log
| | |-- iptables-legacy.log
| | |-- iptables-nft.log
| | |-- link.log
| | |-- memory.log
| | |-- neigh.log
| | |-- netstat.log
| | |-- route.log
| | |-- sysctl.log
| | |-- tcp.log
| | `-- top.log
| |-- openvswitch
| | |-- ovs-vswitchd.log
| | `-- ovsdb-server.log
| `-- ovn
| |-- ovn-controller.log
| |-- ovn-northd.log
| |-- ovsdb-server-nb.log
| `-- ovsdb-server-sb.log

1.

2.

3.

4.

kubectl ko perf
============================== Prepareing Performance Test Resources ===============================
pod/test-client created
pod/test-host-client created
pod/test-server created
pod/test-host-server created
service/test-server created
pod/test-client condition met
pod/test-host-client condition met
pod/test-host-server condition met
pod/test-server condition met
==
============================ Start Pod Network Unicast Performance Test ============================
Size TCP Latency TCP Bandwidth UDP Latency UDP Lost Rate UDP Bandwidth
64 82.8 us 97.7 Mbits/sec 67.6 us (0%) 8.42 Mbits/sec
128 85.4 us 167 Mbits/sec 67.2 us (0%) 17.2 Mbits/sec
512 85.8 us 440 Mbits/sec 68.7 us (0%) 68.4 Mbits/sec
1k 85.1 us 567 Mbits/sec 68.7 us (0%) 134 Mbits/sec
4k 138 us 826 Mbits/sec 78.1 us (1.4%) 503 Mbits/sec
==
=============================== Start Host Network Performance Test ================================
Size TCP Latency TCP Bandwidth UDP Latency UDP Lost Rate UDP Bandwidth
64 49.7 us 120 Mbits/sec 37.9 us (0%) 18.6 Mbits/sec
128 49.7 us 200 Mbits/sec 38.1 us (0%) 35.5 Mbits/sec
512 51.9 us 588 Mbits/sec 38.9 us (0%) 142 Mbits/sec
1k 51.7 us 944 Mbits/sec 37.2 us (0%) 279 Mbits/sec
4k 74.9 us 1.66 Gbits/sec 39.9 us (0%) 1.20 Gbits/sec
==
============================== Start Service Network Performance Test ==============================
Size TCP Latency TCP Bandwidth UDP Latency UDP Lost Rate UDP Bandwidth
64 111 us 96.3 Mbits/sec 88.4 us (0%) 7.59 Mbits/sec
128 83.7 us 150 Mbits/sec 69.2 us (0%) 16.9 Mbits/sec
512 87.4 us 374 Mbits/sec 75.8 us (0%) 60.9 Mbits/sec
1k 88.2 us 521 Mbits/sec 73.1 us (0%) 123 Mbits/sec
4k 148 us 813 Mbits/sec 77.6 us (0.0044%) 451 Mbits/sec
==
=========================== Start Pod Multicast Network Performance Test ===========================
Size UDP Latency UDP Lost Rate UDP Bandwidth
64 0.014 ms (0.17%) 5.80 Mbits/sec
128 0.012 ms (0%) 11.4 Mbits/sec
512 0.016 ms (0%) 46.1 Mbits/sec
1k 0.023 ms (0.073%) 89.8 Mbits/sec
4k 0.035 ms (1.3%) 126 Mbits/sec
==
============================= Start Host Multicast Network Performance =============================
Size UDP Latency UDP Lost Rate UDP Bandwidth
64 0.007 ms (0%) 9.95 Mbits/sec
128 0.005 ms (0%) 21.8 Mbits/sec
512 0.008 ms (0%) 86.8 Mbits/sec
1k 0.013 ms (0.045%) 168 Mbits/sec
4k 0.010 ms (0.31%) 242 Mbits/sec

6.1.2 Plugin Usage

- 146/324 - 2025 Kube-OVN Team

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

6.1.3 Comments

==
================================== Start Leader Recover Time Test ==================================
Delete ovn central nb pod
pod "ovn-central-5cb9c67d75-tlz9w" deleted
Waiting for ovn central nb pod running
=============================== OVN nb Recovery takes 3.305236803 s ================================
Delete ovn central sb pod
pod "ovn-central-5cb9c67d75-szx4c" deleted
Waiting for ovn central sb pod running
=============================== OVN sb Recovery takes 3.462698535 s ================================
Delete ovn central northd pod
pod "ovn-central-5cb9c67d75-zqmqv" deleted
Waiting for ovn central northd pod running
============================= OVN northd Recovery takes 2.691291403 s ==============================
==
================================= Remove Performance Test Resource =================================
rm -f unicast-test-client.log
rm -f unicast-test-host-client.log
rm -f unicast-test-client.log
kubectl ko nbctl lb-del test-server
rm -f multicast-test-server.log
kubectl exec ovs-ovn-gxdrf -n kube-system -- ip maddr del 01:00:5e:00:00:64 dev eth0
kubectl exec ovs-ovn-h57bf -n kube-system -- ip maddr del 01:00:5e:00:00:64 dev eth0
rm -f multicast-test-host-server.log
pod "test-client" deleted
pod "test-host-client" deleted
pod "test-host-server" deleted
pod "test-server" deleted
service "test-server" deleted
==

6.1.3 Comments

- 147/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater

6.2 Delete Work Node

If the node is simply removed from Kubernetes, the ovn-controller process running in ovs-ovn on the node will periodically

connect to ovn-central to register relevant network information. This leads to additional resource waste and potential rule

conflict risk. Therefore, when removing nodes from within Kubernetes, follow the steps below to ensure that related resources

are cleaned up properly.

This document describes the steps to delete a worker node, if you want to change the node where ovn-central is located, please

refer to Replace ovn-central Node.

6.2.1 Evict Pods on the Node

6.2.2 Stop kubelet and docker

This step stops the ovs-ovn container to avoid registering information to ovn-central . Log into to the corresponding node and

ruu the following commands:

If using containerd as the CRI, the following command needs to be executed to stop the ovs-ovn container:

6.2.3 Cleanup Files on Node

6.2.4 Delete the Node

6.2.5 Check If Node Removed from OVN-SB

In the example below, the node kube-ovn-worker is not removed:

kubectl drain kube-ovn-worker --ignore-daemonsets --force
node/kube-ovn-worker cordoned
WARNING: ignoring DaemonSet-managed Pods: kube-system/kube-ovn-cni-zt74b, kube-system/kube-ovn-pinger-5rxfs, kube-system/kube-proxy-jpmnm, kube-system/ovs-

ovn-v2kll
evicting pod kube-system/coredns-64897985d-qsgpt
evicting pod local-path-storage/local-path-provisioner-5ddd94ff66-llss6
evicting pod kube-system/kube-ovn-controller-8459db5ff4-94lxb
pod/kube-ovn-controller-8459db5ff4-94lxb evicted
pod/coredns-64897985d-qsgpt evicted
pod/local-path-provisioner-5ddd94ff66-llss6 evicted
node/kube-ovn-worker drained

systemctl stop kubelet
systemctl stop docker

crictl rm -f $(crictl ps | grep openvswitch | awk '{print $1}')

rm -rf /var/run/openvswitch
rm -rf /var/run/ovn
rm -rf /etc/origin/openvswitch/
rm -rf /etc/origin/ovn/
rm -rf /etc/cni/net.d/00-kube-ovn.conflist
rm -rf /etc/cni/net.d/01-kube-ovn.conflist
rm -rf /var/log/openvswitch
rm -rf /var/log/ovn

kubectl delete no kube-ovn-01

kubectl ko sbctl show
Chassis "b0564934-5a0d-4804-a4c0-476c93596a17"

hostname: kube-ovn-worker
Encap geneve

ip: "172.18.0.2"
options: {csum="true"}

Port_Binding kube-ovn-pinger-5rxfs.kube-system
Chassis "6a29de7e-d731-4eaf-bacd-2f239ee52b28"

hostname: kube-ovn-control-plane
Encap geneve

ip: "172.18.0.3"

6.2 Delete Work Node

- 148/324 - 2025 Kube-OVN Team

6.2.6 Delete the Chassis Manually

Use the uuid find above to delete the chassis:

 PDF Slack Support

July 30, 2025

June 3, 2022

GitHub

6.2.7 Comments

options: {csum="true"}
Port_Binding coredns-64897985d-nbfln.kube-system
Port_Binding node-kube-ovn-control-plane
Port_Binding local-path-provisioner-5ddd94ff66-h4tn9.local-path-storage
Port_Binding kube-ovn-pinger-hf2p6.kube-system
Port_Binding coredns-64897985d-fhwlw.kube-system

kubectl ko sbctl chassis-del b0564934-5a0d-4804-a4c0-476c93596a17
kubectl ko sbctl show
Chassis "6a29de7e-d731-4eaf-bacd-2f239ee52b28"

hostname: kube-ovn-control-plane
Encap geneve

ip: "172.18.0.3"
options: {csum="true"}

Port_Binding coredns-64897985d-nbfln.kube-system
Port_Binding node-kube-ovn-control-plane
Port_Binding local-path-provisioner-5ddd94ff66-h4tn9.local-path-storage
Port_Binding kube-ovn-pinger-hf2p6.kube-system
Port_Binding coredns-64897985d-fhwlw.kube-system

6.2.6 Delete the Chassis Manually

- 149/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

6.3 Replace ovn-central Node

Since ovn-nb and ovn-sb within ovn-central create separate etcd-like raft clusters, replacing the ovn-central node requires

additional operations to ensure correct cluster state and consistent data. It is recommended that only one node be up and down

at a time to avoid the cluster going into an unavailable state and affecting the overall cluster network.

6.3.1 ovn-central Nodes Offline

This document use the cluster below to describes how to remove the kube-ovn-control-plane2 node from the ovn-central as an

example.

Kick Node in ovn-nb

First check the ID of the node within the cluster for subsequent operations.

kube-ovn-control-plane2 corresponds to a node IP of 172.18.0.5 and the corresponding ID within the cluster is d64b . Next, kick

the node out of the ovn-nb cluster.

Check if the node has been kicked:

kubectl -n kube-system get pod -o wide | grep central
ovn-central-6bf58cbc97-2cdhg 1/1 Running 0 21m 172.18.0.3 kube-ovn-control-plane <none> <none>
ovn-central-6bf58cbc97-crmfp 1/1 Running 0 21m 172.18.0.5 kube-ovn-control-plane2 <none> <none>
ovn-central-6bf58cbc97-lxmpl 1/1 Running 0 21m 172.18.0.4 kube-ovn-control-plane3 <none> <none>

kubectl ko nb status
1b9a
Name: OVN_Northbound
Cluster ID: 32ca (32ca07fb-739b-4257-b510-12fa18e7cce8)
Server ID: 1b9a (1b9a5d76-e69b-410c-8085-39943d0cd38c)
Address: tcp:[172.18.0.3]:6643
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 2135194 ms ago, reason: timeout
Last Election won: 2135188 ms ago
Election timer: 5000
Log: [135, 135]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-d64b ->d64b <-4984 ->4984
Disconnections: 0
Servers:

4984 (4984 at tcp:[172.18.0.4]:6643) next_index=135 match_index=134 last msg 1084 ms ago
1b9a (1b9a at tcp:[172.18.0.3]:6643) (self) next_index=2 match_index=134
d64b (d64b at tcp:[172.18.0.5]:6643) next_index=135 match_index=134 last msg 1084 ms ago

status: ok

kubectl ko nb kick d64b
started removal

kubectl ko nb status
1b9a
Name: OVN_Northbound
Cluster ID: 32ca (32ca07fb-739b-4257-b510-12fa18e7cce8)
Server ID: 1b9a (1b9a5d76-e69b-410c-8085-39943d0cd38c)
Address: tcp:[172.18.0.3]:6643
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 2297649 ms ago, reason: timeout
Last Election won: 2297643 ms ago
Election timer: 5000
Log: [136, 136]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-4984 ->4984
Disconnections: 2
Servers:

4984 (4984 at tcp:[172.18.0.4]:6643) next_index=136 match_index=135 last msg 1270 ms ago

6.3 Replace ovn-central Node

- 150/324 - 2025 Kube-OVN Team

Kick Node in ovn-sb

Next, for the ovn-sb cluster, you need to first check the ID of the node within the cluster for subsequent operations.

kube-ovn-control-plane2 corresponds to node IP 172.18.0.5 and the corresponding ID within the cluster is e9f7 . Next, kick the

node out of the ovn-sb cluster.

Check if the node has been kicked:

Delete Node Label and Downscale ovn-central

Note that you need to remove the offline node from the node address of the ovn-central environment variable NODE_IPS .

Modify Components Address to ovn-central

Modify ovs-ovn to remove the offline Node address:

1b9a (1b9a at tcp:[172.18.0.3]:6643) (self) next_index=2 match_index=135
status: ok

kubectl ko sb status
3722
Name: OVN_Southbound
Cluster ID: d4bd (d4bd37a4-0400-499f-b4df-b4fd389780f0)
Server ID: 3722 (3722d5ae-2ced-4820-a6b2-8b744d11fb3e)
Address: tcp:[172.18.0.3]:6644
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 2395317 ms ago, reason: timeout
Last Election won: 2395316 ms ago
Election timer: 5000
Log: [130, 130]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-e9f7 ->e9f7 <-6e84 ->6e84
Disconnections: 0
Servers:

e9f7 (e9f7 at tcp:[172.18.0.5]:6644) next_index=130 match_index=129 last msg 1006 ms ago
6e84 (6e84 at tcp:[172.18.0.4]:6644) next_index=130 match_index=129 last msg 1004 ms ago
3722 (3722 at tcp:[172.18.0.3]:6644) (self) next_index=2 match_index=129

status: ok

kubectl ko sb kick e9f7
started removal

kubectl ko sb status
3722
Name: OVN_Southbound
Cluster ID: d4bd (d4bd37a4-0400-499f-b4df-b4fd389780f0)
Server ID: 3722 (3722d5ae-2ced-4820-a6b2-8b744d11fb3e)
Address: tcp:[172.18.0.3]:6644
Status: cluster member
Role: leader
Term: 1
Leader: self
Vote: self

Last Election started 2481636 ms ago, reason: timeout
Last Election won: 2481635 ms ago
Election timer: 5000
Log: [131, 131]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: <-6e84 ->6e84
Disconnections: 2
Servers:

6e84 (6e84 at tcp:[172.18.0.4]:6644) next_index=131 match_index=130 last msg 642 ms ago
3722 (3722 at tcp:[172.18.0.3]:6644) (self) next_index=2 match_index=130

status: ok

kubectl label node kube-ovn-control-plane2 kube-ovn/role-
kubectl scale deployment -n kube-system ovn-central --replicas=2
kubectl set env deployment/ovn-central -n kube-system NODE_IPS="172.18.0.3,172.18.0.4"
kubectl rollout status deployment/ovn-central -n kube-system

6.3.1 ovn-central Nodes Offline

- 151/324 - 2025 Kube-OVN Team

Modify kube-ovn-controller to remove the offline Node address:

Clean Node

Delete the database files in the kube-ovn-control-plane2 node to avoid errors when adding the node again:

To take a node offline from a Kubernetes cluster entirely, please continue with Delete Work Node.

6.3.2 ovn-central Online

The following steps will add a new Kubernetes node to the ovn-central cluster.

Directory Check

Check if the ovnnb_db.db or ovnsb_db.db file exists in the /etc/origin/ovn directory of the new node, and if so, delete it:

Check Current ovn-central Status

If the current ovn-central cluster state is already abnormal, adding new nodes may cause the voting election to fail to pass the

majority, affecting subsequent operations.

kubectl set env daemonset/ovs-ovn -n kube-system OVN_DB_IPS="172.18.0.3,172.18.0.4"
daemonset.apps/ovs-ovn env updated
kubectl delete pod -n kube-system -lapp=ovs
pod "ovs-ovn-4f6jc" deleted
pod "ovs-ovn-csn2w" deleted
pod "ovs-ovn-mpbmb" deleted

kubectl set env deployment/kube-ovn-controller -n kube-system OVN_DB_IPS="172.18.0.3,172.18.0.4"
deployment.apps/kube-ovn-controller env updated

kubectl rollout status deployment/kube-ovn-controller -n kube-system
Waiting for deployment "kube-ovn-controller" rollout to finish: 1 of 3 updated replicas are available...
Waiting for deployment "kube-ovn-controller" rollout to finish: 2 of 3 updated replicas are available...
deployment "kube-ovn-controller" successfully rolled out

rm -rf /etc/origin/ovn

rm -rf /etc/origin/ovn

kubectl ko nb status
1b9a
Name: OVN_Northbound
Cluster ID: 32ca (32ca07fb-739b-4257-b510-12fa18e7cce8)
Server ID: 1b9a (1b9a5d76-e69b-410c-8085-39943d0cd38c)
Address: tcp:[172.18.0.3]:6643
Status: cluster member
Role: leader
Term: 44
Leader: self
Vote: self

Last Election started 1855739 ms ago, reason: timeout
Last Election won: 1855729 ms ago
Election timer: 5000
Log: [147, 147]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: ->4984 <-4984
Disconnections: 0
Servers:

4984 (4984 at tcp:[172.18.0.4]:6643) next_index=147 match_index=146 last msg 367 ms ago
1b9a (1b9a at tcp:[172.18.0.3]:6643) (self) next_index=140 match_index=146

status: ok

kubectl ko sb status
3722
Name: OVN_Southbound
Cluster ID: d4bd (d4bd37a4-0400-499f-b4df-b4fd389780f0)
Server ID: 3722 (3722d5ae-2ced-4820-a6b2-8b744d11fb3e)
Address: tcp:[172.18.0.3]:6644
Status: cluster member
Role: leader
Term: 33
Leader: self
Vote: self

6.3.2 ovn-central Online

- 152/324 - 2025 Kube-OVN Team

Label Node and Scale ovn-central

Note that you need to add the online node address to the node address of the ovn-central environment variable NODE_IPS .

Modify Components Address to ovn-central

Modify ovs-ovn to add the online Node address:

Modify kube-ovn-controller to add the online Node address:

 PDF Slack Support

February 15, 2023

May 24, 2022

GitHub

6.3.3 Comments

Last Election started 1868589 ms ago, reason: timeout
Last Election won: 1868579 ms ago
Election timer: 5000
Log: [142, 142]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: ->6e84 <-6e84
Disconnections: 0
Servers:

6e84 (6e84 at tcp:[172.18.0.4]:6644) next_index=142 match_index=141 last msg 728 ms ago
3722 (3722 at tcp:[172.18.0.3]:6644) (self) next_index=134 match_index=141

status: ok

kubectl label node kube-ovn-control-plane2 kube-ovn/role=master
kubectl scale deployment -n kube-system ovn-central --replicas=3
kubectl set env deployment/ovn-central -n kube-system NODE_IPS="172.18.0.3,172.18.0.4,172.18.0.5"
kubectl rollout status deployment/ovn-central -n kube-system

kubectl set env daemonset/ovs-ovn -n kube-system OVN_DB_IPS="172.18.0.3,172.18.0.4,172.18.0.5"
daemonset.apps/ovs-ovn env updated
kubectl delete pod -n kube-system -lapp=ovs
pod "ovs-ovn-4f6jc" deleted
pod "ovs-ovn-csn2w" deleted
pod "ovs-ovn-mpbmb" deleted

kubectl set env deployment/kube-ovn-controller -n kube-system OVN_DB_IPS="172.18.0.3,172.18.0.4,172.18.0.5"
deployment.apps/kube-ovn-controller env updated

kubectl rollout status deployment/kube-ovn-controller -n kube-system
Waiting for deployment "kube-ovn-controller" rollout to finish: 1 of 3 updated replicas are available...
Waiting for deployment "kube-ovn-controller" rollout to finish: 2 of 3 updated replicas are available...
deployment "kube-ovn-controller" successfully rolled out

6.3.3 Comments

- 153/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

6.4 OVN DB Backup and Recovery

This document describes how to perform database backups and how to perform cluster recovery from existing database files in

different situations.

6.4.1 Database Backup

The database files can be backed up for recovery in case of failure. Use the backup command of the kubectl plugin:

6.4.2 Cluster Partial Nodes Failure Recovery

If some nodes in the cluster are working abnormally due to power failure, file system failure or lack of disk space, but the cluster

is still working normally, you can recover it by following the steps below.

Check the Logs to Confirm Status

Check the log in /var/log/ovn/ovn-northd.log , if it shows similar error as follows, you can make sure that there is an exception in

the database:

Kick Node from Cluster

Select the corresponding database for the operation based on whether the log prompt is OVN_Northbound or OVN_Southbound . The

above log prompt is OVN_Northbound then for ovn-nb do the following:

Kick abnormal nodes from the cluster:

Log in to the abnormal node and delete the database file:

kubectl ko nb backup
tar: Removing leading `/' from member names
backup ovn-nb db to /root/ovnnb_db.060223191654183154.backup

kubectl ko sb backup
tar: Removing leading `/' from member names
backup ovn-nb db to /root/ovnsb_db.060223191654183154.backup

* ovn-northd is not running
ovsdb-server: ovsdb error: error reading record 2739 from OVN_Northbound log: record 2739 advances commit index to 6308 but last log index is 6307
* Starting ovsdb-nb

kubectl ko nb status
9182
Name: OVN_Northbound
Cluster ID: e75f (e75fa340-49ed-45ab-990e-26cb865ebc85)
Server ID: 9182 (9182e8dd-b5b0-4dd8-8518-598cc1e374f3)
Address: tcp:[10.0.128.61]:6643
Status: cluster member
Role: leader
Term: 1454
Leader: self
Vote: self

Last Election started 1732603 ms ago, reason: timeout
Last Election won: 1732587 ms ago
Election timer: 1000
Log: [7332, 12512]
Entries not yet committed: 1
Entries not yet applied: 1
Connections: ->f080 <-f080 <-e631 ->e631
Disconnections: 1
Servers:

f080 (f080 at tcp:[10.0.129.139]:6643) next_index=12512 match_index=12510 last msg 63 ms ago
9182 (9182 at tcp:[10.0.128.61]:6643) (self) next_index=10394 match_index=12510
e631 (e631 at tcp:[10.0.131.173]:6643) next_index=12512 match_index=0

kubectl ko nb kick e631

mv /etc/origin/ovn/ovnnb_db.db /tmp

6.4 OVN DB Backup and Recovery

- 154/324 - 2025 Kube-OVN Team

Delete the ovn-central pod of the corresponding node and wait for the cluster to recover:

6.4.3 Recover when Total Cluster Failed

If the majority of the cluster nodes are broken and the leader cannot be elected, please refer to the following steps to recover.

Stop ovn-central

Record the current replicas of ovn-central and stop ovn-central to avoid new database changes that affect recovery:

Select a Backup

As most of the nodes are damaged, the cluster needs to be rebuilt by recovering from one of the database files. If you have

previously backed up the database you can use the previous backup file to restore it. If not you can use the following steps to

generate a backup from an existing file.

Since the database file in the default folder is a cluster format database file containing information about the current cluster, you

can't rebuild the database directly with this file, you need to use ovsdb-tool cluster-to-standalone to convert the format.

Select the first node in the ovn-central environment variable NODE_IPS to restore the database files. If the database file of the

first node is corrupted, copy the file from the other machine /etc/origin/ovn to the first machine. Run the following command to

generate a database file backup.

Delete the Database Files on All ovn-central Nodes

In order to avoid rebuilding the cluster with the wrong data, the existing database files need to be cleaned up:

Recovering Database Cluster

Rename the backup databases to ovnnb_db.db and ovnsb_db.db respectively, and copy them to the /etc/origin/ovn/ directory of

the first machine in the ovn-central environment variable NODE_IPS :

Restore the number of replicas of ovn-central :

 PDF Slack Support

kubectl delete pod -n kube-system ovn-central-xxxx

kubectl scale deployment -n kube-system ovn-central --replicas=0

docker run -it -v /etc/origin/ovn:/etc/ovn kubeovn/kube-ovn:v1.14.4 bash
cd /etc/ovn/
ovsdb-tool cluster-to-standalone ovnnb_db_standalone.db ovnnb_db.db
ovsdb-tool cluster-to-standalone ovnsb_db_standalone.db ovnsb_db.db

mv /etc/origin/ovn/ovnnb_db.db /tmp
mv /etc/origin/ovn/ovnsb_db.db /tmp

mv /etc/origin/ovn/ovnnb_db_standalone.db /etc/origin/ovn/ovnnb_db.db
mv /etc/origin/ovn/ovnsb_db_standalone.db /etc/origin/ovn/ovnsb_db.db

kubectl scale deployment -n kube-system ovn-central --replicas=3
kubectl rollout status deployment/ovn-central -n kube-system

6.4.3 Recover when Total Cluster Failed

- 155/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 30, 2025

May 24, 2022

GitHub

6.4.4 Comments

6.4.4 Comments

- 156/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

6.5 Change Subnet CIDR

If a subnet CIDR is created that conflicts or does not meet expectations, it can be modified by following the steps in this

document.

After modifying the subnet CIDR, the previously created Pods will not be able to access the network properly and need to be

rebuilt. Careful consideration is recommended before operating. This document is only for business subnet CIDR changes, if you

need to Change the Join subnet CIDR, please refer to Change Join CIDR.

6.5.1 Edit Subnet

Use kubectl edit to modify cidrBlock , gateway and excludeIps .

6.5.2 Rebuild all Pods under this Subnet

Take the subnet binding test Namespace as example:

If only the default subnet is used, you can delete all Pods that are not in host network mode using the following command:

6.5.3 Change Default Subnet Settings

If you are modifying the CIDR for the default Subnet, you also need to change the args of the kube-ovn-controller Deployment:

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

6.5.4 Comments

kubectl edit subnet test-subnet

for pod in $(kubectl get pod --no-headers -n "$ns" --field-selector spec.restartPolicy=Always -o custom-columns=NAME:.metadata.name,HOST:spec.hostNetwork |
awk '{if ($2!="true") print $1}'); do

kubectl delete pod "$pod" -n test --ignore-not-found
done

for ns in $(kubectl get ns --no-headers -o custom-columns=NAME:.metadata.name); do
for pod in $(kubectl get pod --no-headers -n "$ns" --field-selector spec.restartPolicy=Always -o custom-columns=NAME:.metadata.name,HOST:spec.hostNetwork |

awk '{if ($2!="true") print $1}'); do
kubectl delete pod "$pod" -n "$ns" --ignore-not-found

done
done

args:
- --default-cidr=10.17.0.0/16
- --default-gateway=10.17.0.1
- --default-exclude-ips=10.17.0.1

6.5 Change Subnet CIDR

- 157/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

6.6 Change Join Subnet CIDR

If the Join subnet CIDR created conflicts or does not meet expectations, you can use this document to modify.

After modifying the Join Subnet CIDR, the previously created Pods will not be able to access the external network normally and

need to wait for the rebuild completed.

6.6.1 Delete Join Subnet

6.6.2 Cleanup Allocated Config

6.6.3 Modify Join Subnet

Change Join Subnet args in kube-ovn-controller :

Change the CIDR below:

Reboot the kube-ovn-controller and rebuild join Subnet:

Check the new Join Subnet information:

6.6.4 Reconfigure ovn0 NIC Address

The ovn0 NIC information for each node needs to be re-updated, which can be done by restarting kube-ovn-cni :

 PDF Slack Support

February 15, 2023

May 24, 2022

GitHub

kubectl patch subnet join --type='json' -p '[{"op": "replace", "path": "/metadata/finalizers", "value": []}]'
kubectl delete subnet join

kubectl annotate node ovn.kubernetes.io/allocated=false --all --overwrite

kubectl edit deployment -n kube-system kube-ovn-controller

args:
- --node-switch-cidr=100.51.0.0/16

kubectl delete pod -n kube-system -lapp=kube-ovn-controller

kubectl get subnet
NAME PROVIDER VPC PROTOCOL CIDR PRIVATE NAT DEFAULT GATEWAYTYPE V4USED V4AVAILABLE V6USED V6AVAILABLE
EXCLUDEIPS
join ovn ovn-cluster IPv4 100.51.0.0/16 false false false distributed 2 65531 0 0
["100.51.0.1"]
ovn-default ovn ovn-cluster IPv4 10.17.0.0/16 false true true distributed 5 65528 0 0
["10.17.0.1"]

kubectl delete pod -n kube-system -l app=kube-ovn-cni

6.6 Change Join Subnet CIDR

- 158/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

6.6.5 Comments

6.6.5 Comments

- 159/324 - 2025 Kube-OVN Team

6.7 Change Log Level

Open kube-ovn.yaml and set the log level in the parameter list of the service startup script, such as:

 PDF Slack Support

May 9, 2023

April 4, 2023

GitHub

6.7.1 Comments

vi kube-ovn.yaml
...

- name: kube-ovn-controller
image: "docker.io/kubeovn/kube-ovn:v1.14.4"
imagePullPolicy: IfNotPresent
args:
- /kube-ovn/start-controller.sh
- --v=3

...
The higher the log level, the more detailed the log

6.7 Change Log Level

- 160/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/bobz965
https://github.com/bobz965

6.8 FAQ

6.8.1 Kylin ARM system cross-host container access intermittently fails

Behavior

There is a problem with Kylin ARM system and some NIC offload, which can cause intermittent container network failure.

Use netstat to identify the problem:

If InCsumErrors is present and increases with network failures, you can confirm that this is the problem.

Solution

The fundamental solution requires communication with Kylin and the corresponding network card manufacturer to update the

system and drivers. A temporary solution would be to turn off tx offload on the physical NIC, but this would cause a significant

degradation in tcp performance.

From the community feedback, the problem can be solved by the 4.19.90-25.16.v2101 kernel.

6.8.2 Pod can not Access Service

Behavior

Pod can not access Service, and dmesg show errors:

This log indicates that the in-kernel OVS version is too low to support the corresponding NAT operation.

Solution

Upgrade the kernel module or compile the OVS kernel module manually.

If you are using an Overlay network you can change the kube-ovn-controller args, setting --enable-lb=false to disable the OVN LB

to use kube-proxy for service forwarding.

netstat -us
IcmpMsg:

InType0: 22
InType3: 24
InType8: 117852
OutType0: 117852
OutType3: 29
OutType8: 22

Udp:
3040636 packets received
0 packets to unknown port received.
4 packet receive errors
602 packets sent
0 receive buffer errors
0 send buffer errors
InCsumErrors: 4

UdpLite:
IpExt:

InBcastPkts: 10244
InOctets: 4446320361
OutOctets: 1496815600
InBcastOctets: 3095950
InNoECTPkts: 7683903

ethtool -K eth0 tx off

netlink Unknown conntrack attr (type=6, max=5)
openvswitch: netlink: Flow actions may not be safe on all matching packets.

1.

2.

6.8 FAQ

- 161/324 - 2025 Kube-OVN Team

6.8.3 Frequent leader selection occurs in ovn-central

Behavior

Starting from the v1.11.x version, in a cluster with 1w Pod or more, if OVN NB or SB frequently elects the master, the possible

reason is that Kube-OVN periodically performs the ovsdb-server/compact action, which affects the master selection logic.

Solution

You can configure the environment variables for ovn-central as follows and turn off compact:

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

6.8.4 Comments

- name: ENABLE_COMPACT
value: "false"

6.8.3 Frequent leader selection occurs in ovn-central

- 162/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater

7. Advanced Features

7.1 Manage Multiple Interface

Kube-OVN can provide cluster-level IPAM capabilities for other CNI network plugins such as macvlan, vlan, host-device, etc.

Other network plugins can then use the subnet and fixed IP capabilities in Kube-OVN.

Kube-OVN also supports address management when multiple NICs are all of Kube-OVN type.

7.1.1 Working Principle

Multi-nic management:

Here's an illustration of the network interfaces attached to a pod, as provisioned by Multus CNI. The diagram shows the pod with

three interfaces: eth0, net0 and net1. eth0 connects kubernetes cluster network to connect with kubernetes server/services (e.g.

kubernetes api-server, kubelet and so on). net0 and net1 are additional network attachments and connect to other networks by

using other CNI plugins (e.g. vlan/vxlan/ptp).

IPAM:

By using Multus CNI, we can add multiple NICs of different networks to a Pod. However, we still lack the ability to manage the IP

addresses of different networks within a cluster. In Kube-OVN, we have been able to perform advanced IP management such as

subnet management, IP reservation, random assignment, fixed assignment, etc. through CRD of Subnet and IP. Now Kube-OVN

extend the subnet to integrate with other different network plugins, so that other network plugins can also use the IPAM

functionality of Kube-OVN.

7. Advanced Features

- 163/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni

Workflow

The above diagram shows how to manage the IP addresses of other network plugins via Kube-OVN. The eth0 NIC of the

container is connected to the OVN network and the net1 NIC is connected to other CNI networks. The network definition for the

net1 network is taken from the NetworkAttachmentDefinition resource definition in multus-cni.

When a Pod is created, kube-ovn-controller will get the Pod add event, find the corresponding Subnet according to the

annotation in the Pod, then manage the address from it, and write the address information assigned to the Pod back to the Pod

annotation.

The CNI on the container machine can configure kube-ovn-cni as the ipam plugin. kube-ovn-cni will read the Pod annotation and

return the address information to the corresponding CNI plugin using the standard format of the CNI protocol.

7.1.2 Usage

Install Kube-OVN and Multus

Please refer One-Click Installation and Multus how to use to install Kube-OVN and Multus-CNI.

Provide IPAM for other types of CNI

CREATE NETWORKATTACHMENTDEFINITION

Here we use macvlan as the second network of the container network and set its ipam to kube-ovn :

load macvlan module
sudo modprobe macvlan

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: macvlan
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth0",
"mode": "bridge",

7.1.2 Usage

- 164/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/how-to-use.md

spec.config.ipam.type : Need to be set to kube-ovn to call the kube-ovn plugin to get the address information.

server_socket : The socket file used for communication to Kube-OVN. The default location is /run/openvswitch/kube-ovn-

daemon.sock .

provider : The current NetworkAttachmentDefinition's <name>. <namespace> , Kube-OVN will use this information to find the

corresponding Subnet resource.

master : the host's physical network card

CREATE A KUBE-OVN SUBNET

Create a Kube-OVN Subnet, set the corresponding cidrBlock and exclude_ips , the provider should be set to the <name>.

<namespace> of corresponding NetworkAttachmentDefinition. For example, to provide additional NICs with macvlan, create a

Subnet as follows:

gateway , private , nat are only valid for networks with provider type ovn, not for attachment networks.

Create a Pod with Multiple NIC

For Pods with randomly assigned addresses, simply add the following annotation k8s.v1.cni.cncf.io/networks , taking the value

<namespace>/<name> of the corresponding NetworkAttachmentDefinition:

Create Pod with a Fixed IP

For Pods with fixed IPs, add <networkAttachmentName>.<networkAttachmentNamespace>.kubernetes.io/ip_address annotation:

Create Workloads with Fixed IPs

For workloads that use ippool, add <networkAttachmentName>.<networkAttachmentNamespace>.kubernetes.io/ip_pool annotations:

"ipam": {
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "macvlan.default"

}
}'

•

•

•

•

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: macvlan
spec:

protocol: IPv4
provider: macvlan.default
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
excludeIps:
- 172.17.0.0..172.17.0.10

apiVersion: v1
kind: Pod
metadata:

name: samplepod
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: default/macvlan
spec:

containers:
- name: samplepod

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

apiVersion: v1
kind: Pod
metadata:

name: static-ip
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: default/macvlan
ovn.kubernetes.io/ip_address: 10.16.0.15
ovn.kubernetes.io/mac_address: 00:00:00:53:6B:B6
macvlan.default.kubernetes.io/ip_address: 172.17.0.100
macvlan.default.kubernetes.io/mac_address: 00:00:00:53:6B:BB

spec:
containers:
- name: static-ip

image: docker.io/library/nginx:alpine

7.1.2 Usage

- 165/324 - 2025 Kube-OVN Team

Create a Pod using macvlan as default route

For Pods that use macvlan as an accessory network card, if you want to use the accessory network card as the default route of

the Pod, you only need to add the following annotation, default-route is the gateway address:

Create a Pod using macvlan as the main nic

For Pods that use macvlan as the main network card, you only need to add the following annotation v1.multus-cni.io/default-

network , whose value is <namespace>/<name> of the corresponding NetworkAttachmentDefinition:

CREATE A KUBE-OVN SUBNET (PROVIDER OVN)

Create a Kube-OVN Subnet, set the corresponding cidrBlock and exclude_ips , provider is ovn, and create the Subnet as follows:

apiVersion: apps/v1
kind: Deployment
metadata:

namespace: default
name: static-workload
labels:

app: static-workload
spec:

replicas: 2
selector:

matchLabels:
app: static-workload

template:
metadata:

labels:
app: static-workload

annotations:
k8s.v1.cni.cncf.io/networks: default/macvlan
ovn.kubernetes.io/ip_pool: 10.16.0.15,10.16.0.16,10.16.0.17
macvlan.default.kubernetes.io/ip_pool: 172.17.0.200,172.17.0.201,172.17.0.202

spec:
containers:
- name: static-workload

image: docker.io/library/nginx:alpine

apiVersion: v1
kind: Pod
metadata:

name: samplepod-route
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: '[{
"name": "macvlan",
"namespace": "default",
"default-route": ["172.17.0.1"]

}]'
spec:

containers:
- name: samplepod-route

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

apiVersion: v1
kind: Pod
metadata:

name: samplepod-macvlan
namespace: default
annotations:

v1.multus-cni.io/default-network: default/macvlan
spec:

containers:
- name: samplepod-macvlan

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: macvlan
spec:

protocol: IPv4
provider: ovn
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
excludeIps:
- 172.17.0.0..172.17.0.10

7.1.2 Usage

- 166/324 - 2025 Kube-OVN Team

Create a Pod with Multiple NIC

For Pods that need to obtain IP from the subnet with provider type ovn, you need to combine the annotation k8s.v1.cni.cncf.io/

networks and <networkAttachmentName>.<networkAttachmentNamespace>.kubernetes.io/logical_switch use:

k8s.v1.cni.cncf.io/networks : The value is <namespace>/<name> of the corresponding NetworkAttachmentDefinition

macvlan.default.kubernetes.io/logical_switch : The value is the subnet name

Note: Specifying a subnet through <networkAttachmentName>.<networkAttachmentNamespace>.kubernetes.io/logical_switch has a

higher priority than specifying a subnet through provider. Subnets based on ovn type provide ipam and also support the creation

of fixed IP Pods and the creation of fixed IP pods. IP workload, create a Pod with the default route as macvlan, but creating a Pod

with the main network card as macvlan is not supported.

The attached NIC is a Kube-OVN type NIC

At this point, the multiple NICs are all Kube-OVN type NICs.

CREATE NETWORKATTACHMENTDEFINITION

Set the provider suffix to ovn :

spec.config.ipam.type : Need to be set to kube-ovn to call the kube-ovn plugin to get the address information.

server_socket : The socket file used for communication to Kube-OVN. The default location is /run/openvswitch/kube-ovn-

daemon.sock .

provider : The current NetworkAttachmentDefinition's <name>. <namespace> , Kube-OVN will use this information to find the

corresponding Subnet resource. It should have the suffix ovn here.

CREATE A KUBE-OVN SUBNET

If you are using Kube-OVN as an attached NIC, provider should be set to the <name>. <namespace>.ovn of the corresponding

NetworkAttachmentDefinition, and should end with ovn as a suffix.

An example of creating a Subnet with an additional NIC provided by Kube-OVN is as follows:

apiVersion: v1
kind: Pod
metadata:

name: samplepod
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: default/macvlan
macvlan.default.kubernetes.io/logical_switch: macvlan

spec:
containers:
- name: samplepod

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

•

•

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: attachnet
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "attachnet.default.ovn"

}'

•

•

•

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: attachnet
spec:

protocol: IPv4
provider: attachnet.default.ovn
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
excludeIps:
- 172.17.0.0..172.17.0.10

7.1.2 Usage

- 167/324 - 2025 Kube-OVN Team

Create a Pod with Multiple NIC

For Pods with randomly assigned addresses, simply add the following annotation k8s.v1.cni.cncf.io/networks , taking the value

<namespace>/<name> of the corresponding NetworkAttachmentDefinition.:

CREATE A KUBE-OVN SUBNET (PROVIDER OVN)

Create a Kube-OVN Subnet, set the corresponding cidrBlock and exclude_ips , provider is ovn, and create the Subnet as follows:

Create a Pod with Multiple NIC

For Pods that need to obtain IP from the subnet whose provider type is ovn, the annotation k8s.v1.cni.cncf.io/networks and

<networkAttachmentName>.<networkAttachmentNamespace>.ovn.kubernetes.io/logical_switch need to be used in conjunction with:

k8s.v1.cni.cncf.io/networks : The value is <namespace>/<name> of the corresponding NetworkAttachmentDefinition

attachnet.default.ovn.kubernetes.io/logical_switch : The value is the subnet name

Note: Specifying a subnet through <networkAttachmentName>.<networkAttachmentNamespace>.ovn.kubernetes.io/logical_switch has a

higher priority than specifying a subnet through provider. For Pods with Kube-OVN attached network cards, the creation of fixed

IPs is supported. Pod, create a workload using a fixed IP, create a Pod with the default route as macvlan, and also support the

creation of a Pod with the main network card as Kube-OVN type. For the configuration method, please refer to the previous

section.

 PDF Slack Support

July 30, 2025

May 20, 2022

GitHub

apiVersion: v1
kind: Pod
metadata:

name: samplepod
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: default/attachnet
spec:

containers:
- name: samplepod

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: attachnet
spec:

protocol: IPv4
provider: ovn
cidrBlock: 172.17.0.0/16
gateway: 172.17.0.1
excludeIps:
- 172.17.0.0..172.17.0.10

apiVersion: v1
kind: Pod
metadata:

name: samplepod
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: default/attachnet
attachnet.default.ovn.kubernetes.io/logical_switch: attachnet

spec:
containers:
- name: samplepod

command: ["/bin/ash", "-c", "trap : TERM INT; sleep infinity & wait"]
image: docker.io/library/alpine:edge

•

•

7.1.2 Usage

- 168/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/SuniAve
https://github.com/SuniAve

7.1.3 Comments

7.1.3 Comments

- 169/324 - 2025 Kube-OVN Team

7.2 Performance Tuning

To keep the installation simple and feature-complete, the default installation script for Kube-OVN does not have performance-

specific optimizations. If the applications are sensitive to latency and throughput, administrators can use this document to make

specific performance optimizations.

The community will continue to iterate on the performance. Some general performance optimizations have been integrated into

the latest version, so it is recommended to use the latest version to get better default performance.

For more on the process and methodology of performance optimization, please watch the video Kube-OVN .

7.2.1 Benchmarking

Because the hardware and software environments vary greatly, the performance test data provided here can only be used as a

reference, and the actual test results may differ significantly from the results in this document. It is recommended to compare

the performance test results before and after optimization, and the performance comparison between the host network and the

container network.

Overlay Performance Comparison before and after Optimization

Environment:

Kubernetes: 1.22.0

OS: CentOS 7

Kube-OVN: 1.8.0 Overlay Mode

CPU: Intel(R) Xeon(R) E-2278G

Network: 2*10Gbps, xmit_hash_policy=layer3+4

We use qperf -t 60 <server ip> -ub -oo msg_size:1 -vu tcp_lat tcp_bw udp_lat udp_bw to test bandwidth and latency of tcp/udp in

1-byte packets and the host network, respectively.

Overlay and Underlay Comparison

Next, we compare the overlay and underlay performance of the optimized Kube-OVN at different packet sizes with the host

network.

Environment:

Kubernetes: 1.22.0

OS: CentOS 7

Kube-OVN: 1.8.0

CPU: AMD EPYC 7402P 24-Core Processor

Network: Intel Corporation Ethernet Controller XXV710 for 25GbE SFP28

•

•

•

•

•

Type tcp_lat (us) udp_lat (us) tcp_bw (Mb/s) udp_bw(Mb/s)

Kube-OVN Default 25.7 22.9 27.1 1.59

Kube-OVN Optimized 13.9 12.9 27.6 5.57

HOST Network 13.1 12.4 28.2 6.02

•

•

•

•

•

7.2 Performance Tuning

- 170/324 - 2025 Kube-OVN Team

https://www.bilibili.com/video/BV1zS4y1T73m?share_source=copy_web

qperf -t 60 <server ip> -ub -oo msg_size:1 -vu tcp_lat tcp_bw udp_lat udp_bw

qperf -t 60 <server ip> -ub -oo msg_size:1K -vu tcp_lat tcp_bw udp_lat udp_bw

qperf -t 60 <server ip> -ub -oo msg_size:4K -vu tcp_lat tcp_bw udp_lat udp_bw

In some cases the container network outperforms the host network, this is because the container network path is optimized to

completely bypass netfilter. Due to the existence of kube-proxy , all packets in host network have to go through netfilter, which

will lead to more CPU consumption, so that container network in some environments has better performance.

7.2.2 Dataplane performance optimization methods

The optimization methods described here are related to the hardware and software environment and the desired functionality, so

please carefully understand the prerequisites for optimization before attempting it.

CPU Performance Mode Tuning

In some environments the CPU is running in power saving mode, performance in this mode will be unstable and latency will

increase significantly, it is recommended to use the CPU's performance mode for more stable performance.

NIC Hardware Queue Adjustment

In the case of increased traffic, a small buffer queue may lead to significant performance degradation due to a high packet loss

rate and needs to be tuned.

Check the current NIC queue length:

Type tcp_lat (us) udp_lat (us) tcp_bw (Mb/s) udp_bw(Mb/s)

Kube-OVN Overlay 15.2 14.6 23.6 2.65

Kube-OVN Underlay 14.3 13.8 24.2 3.46

HOST Network 16.6 15.4 24.8 2.64

Type tcp_lat (us) udp_lat (us) tcp_bw (Gb/s) udp_bw(Gb/s)

Kube-OVN Overlay 16.5 15.8 10.2 2.77

Kube-OVN Underlay 15.9 14.5 9.6 3.22

HOST Network 18.1 16.6 9.32 2.66

Type tcp_lat (us) udp_lat (us) tcp_bw (Gb/s) udp_bw(Gb/s)

Kube-OVN Overlay 34.7 41.6 16.0 9.23

Kube-OVN Underlay 32.6 44 15.1 6.71

HOST Network 35.9 45.9 14.6 5.59

cpupower frequency-set -g performance

ethtool -g eno1
Ring parameters for eno1:
Pre-set maximums:
RX: 4096
RX Mini: 0
RX Jumbo: 0
TX: 4096
Current hardware settings:
RX: 255
RX Mini: 0

7.2.2 Dataplane performance optimization methods

- 171/324 - 2025 Kube-OVN Team

Increase the queue length to the maximum:

Optimize with tuned

tuned can use a series of preconfigured profile files to perform system optimizations for a specific scenario.

For latency-first scenarios:

For throughput-first scenarios:

Interrupt Binding

We recommend disabling irqbalance and binding NIC interrupts to specific CPUs to avoid performance fluctuations caused by

switching between multiple CPUs.

Disable OVN LB

The L2 LB implementation of OVN requires calling the kernel's conntrack module and recirculate, resulting in a significant CPU

overhead, which is tested to be around 20%. For Overlay networks you can use kube-proxy to complete the service forwarding

function for better Pod-to-Pod performance. This can be turned off in kube-ovn-controller args:

In Underlay mode kube-proxy cannot use iptables or ipvs to control container network traffic, if you want to disable the LB

function, you need to confirm whether you do not need the Service function.

FastPath Kernel Module

Since the container network and the host network are on different network ns, the packets will pass through the netfilter module

several times when they are transmitted across the host, which results in a CPU overhead of nearly 20%. The FastPath module

can reduce CPU overhead by bypassing netfilter, since in most cases applications within a container network do not need to use

the functionality of the netfilter module.

If you need to use the functions provided by netfilter such as iptables, ipvs, nftables, etc. in the container network, this module

will disable the related functions.

Since kernel modules are kernel version dependent, it is not possible to provide a single kernel module artifact that adapts to all

kernels. We pre-compiled the FastPath module for part of the kernels, which can be accessed by tuning-package.

You can also compile it manually, see Compiling FastPath Module

After obtaining the kernel module, you can load the FastPath module on each node using insmod kube_ovn_fastpath.ko and verify

that the module was loaded successfully using dmesg :

RX Jumbo: 0
TX: 255

ethtool -G eno1 rx 4096
ethtool -G eno1 tx 4096

tuned-adm profile network-latency

tuned-adm profile network-throughput

command:
- /kube-ovn/start-controller.sh
args:
...
- --enable-lb=false
...

dmesg
...
[619631.323788] init_module,kube_ovn_fastpath_local_out
[619631.323798] init_module,kube_ovn_fastpath_post_routing
[619631.323800] init_module,kube_ovn_fastpath_pre_routing

7.2.2 Dataplane performance optimization methods

- 172/324 - 2025 Kube-OVN Team

https://tuned-project.org/
https://github.com/kubeovn/tunning-package

OVS Kernel Module Optimization

OVS flow processing including hashing, matching, etc. consumes about 10% of the CPU resources. Some instruction sets on

modern x86 CPUs such as popcnt and sse4.2 can speed up the computation process, but the kernel is not compiled with these

options enabled. It has been tested that the CPU consumption of flow-related operations is reduced to about 5% when the

corresponding instruction set optimizations are enabled.

Similar to the compilation of the FastPath module, it is not possible to provide a single kernel module artifact for all kernels.

Users need to compile manually or go to tuning-package to see if a compiled package is available for download.

Before using this kernel module, please check if the CPU supports the following instruction set:

COMPILE AND INSTALL IN CENTOS

Install the relevant compilation dependencies and kernel headers:

Compile the OVS kernel module and generate the corresponding RPM:

Copy the RPM to each node and install:

If you have previously started Kube-OVN and the older version of the OVS module has been loaded into the kernel. It is

recommended to reboot the machine to reload the new version of the kernel module.

COMPILE AND INSTALL IN UBUNTU

Install the relevant compilation dependencies and kernel headers:

Compile the OVS kernel module and install:

If you have previously started Kube-OVN and the older version of the OVS module has been loaded into the kernel. It is

recommended to reboot the machine to reload the new version of the kernel module.

[619631.323801] init_module,kube_ovn_fastpath_local_in
...

cat /proc/cpuinfo | grep popcnt
cat /proc/cpuinfo | grep sse4_2

yum install -y gcc kernel-devel-$(uname -r) python3 autoconf automake libtool rpm-build openssl-devel

git clone -b branch-2.17 --depth=1 https://github.com/openvswitch/ovs.git
cd ovs
curl -s https://github.com/kubeovn/ovs/commit/2d2c83c26d4217446918f39d5cd5838e9ac27b32.patch | git apply
./boot.sh
./configure --with-linux=/lib/modules/$(uname -r)/build CFLAGS="-g -O2 -mpopcnt -msse4.2"
make rpm-fedora-kmod
cd rpm/rpmbuild/RPMS/x86_64/

rpm -i openvswitch-kmod-2.15.2-1.el7.x86_64.rpm

apt install -y autoconf automake libtool gcc build-essential libssl-dev

git clone -b branch-2.17 --depth=1 https://github.com/openvswitch/ovs.git
cd ovs
curl -s https://github.com/kubeovn/ovs/commit/2d2c83c26d4217446918f39d5cd5838e9ac27b32.patch | git apply
./boot.sh
./configure --prefix=/usr/ --localstatedir=/var --enable-ssl --with-linux=/lib/modules/$(uname -r)/build
make -j `nproc`
make install
make modules_install

cat > /etc/depmod.d/openvswitch.conf << EOF
override openvswitch * extra
override vport-* * extra
EOF

depmod -a
cp debian/openvswitch-switch.init /etc/init.d/openvswitch-switch
/etc/init.d/openvswitch-switch force-reload-kmod

7.2.2 Dataplane performance optimization methods

- 173/324 - 2025 Kube-OVN Team

https://github.com/kubeovn/tunning-package

Using STT Type Tunnel

Common tunnel encapsulation protocols such as Geneve and Vxlan use the UDP protocol to encapsulate packets and are well

supported in the kernel. However, when TCP packets are encapsulated using UDP, the optimization and offload features of

modern operating systems and network cards for the TCP protocol do not work well, resulting in a significant drop in TCP

throughput. In some virtualization scenarios, due to CPU limitations, TCP packet throughput may even be a tenth of that of the

host network.

STT provides an innovative tunneling protocol that uses TCP formatted header for encapsulation. This encapsulation only

emulates the TCP protocol header format without actually establishing a TCP connection, but can take full advantage of the TCP

optimization capabilities of modern operating systems and network cards. In our tests TCP packet throughput can be improved

several times, reaching performance levels close to those of the host network.

The STT tunnel is not pre-installed in the kernel and needs to be installed by compiling the OVS kernel module, which can be

found in the previous section.

Enable STT tunnel:

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

7.2.3 Comments

kubectl set env daemonset/ovs-ovn -n kube-system TUNNEL_TYPE=stt

kubectl delete pod -n kube-system -lapp=ovs

7.2.3 Comments

- 174/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.3 Compile FastPath Module

After a data plane performance profile, netfilter consumes about 20% of CPU resources for related processing within the

container and on the host. The FastPath module can bypass netfilter to reduce CPU consumption and latency, and increase

throughput. This document will describe how to compile the FastPath module manually.

7.3.1 Download Related Code

7.3.2 Install Dependencies

Here is an example of CentOS dependencies to download:

7.3.3 Compile the Module

For the 3.x kernel:

For the 4.x kernel:

7.3.4 Instal the Kernel Module

Copy kube_ovn_fastpath.ko to each node that needs performance optimization, and run the following command:

Use dmesg to confirm successful installation:

To uninstall a module, use the following command.

This module will not be loaded automatically after machine reboot. If you want to load it automatically, please write the

corresponding autostart script according to the system configuration.

 PDF Slack Support

git clone --depth=1 https://github.com/kubeovn/kube-ovn.git

yum install -y kernel-devel-$(uname -r) gcc elfutils-libelf-devel

cd kube-ovn/fastpath
make all

cd kube-ovn/fastpath/4.18
cp ../Makefile .
make all

insmod kube_ovn_fastpath.ko

dmesg
[619631.323788] init_module,kube_ovn_fastpath_local_out
[619631.323798] init_module,kube_ovn_fastpath_post_routing
[619631.323800] init_module,kube_ovn_fastpath_pre_routing
[619631.323801] init_module,kube_ovn_fastpath_local_in

rmmod kube_ovn_fastpath.ko

7.3 Compile FastPath Module

- 175/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

February 15, 2023

May 24, 2022

GitHub

7.3.5 Comments

7.3.5 Comments

- 176/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

7.4 Accelerate TCP Communication in Node with eBPF

At some edge and 5G scenarios, there will be a lot of TCP communication between Pods on the same node. By using the open

source istio-tcpip-bypass project from Intel, Pods can use the ability of eBPF to bypass the host's TCP/IP protocol stack and

communicate directly through sockets, thereby greatly reducing latency and improving throughput.

7.4.1 Basic Principle

At present, two Pods on the same host need to go through a lot of network stacks, including TCP/IP, netfilter, OVS, etc., as shown

in the following figure:

7.4 Accelerate TCP Communication in Node with eBPF

- 177/324 - 2025 Kube-OVN Team

https://github.com/intel/istio-tcpip-bypass

istio-tcpip-bypass plugin can automatically analyze and identify TCP communication within the same host, and bypass the

complex kernel stack so that socket data transmission can be performed directly to reduce network stack processing overhead,

as shown in the following figure:

7.4.1 Basic Principle

- 178/324 - 2025 Kube-OVN Team

Due to the fact that this component can automatically identify TCP communication within the same host and optimize it. In the

Service Mesh environment based on the proxy mode, this component can also enhance the performance of Service Mesh.

For more technical implementation details, please refer to Tanzu Service Mesh Acceleration using eBPF.

7.4.2 Prerequisites

eBPF requires a kernel version of at least 5.4.0-74-generic. It is recommended to use Ubuntu 20.04 and Linux 5.4.0-74-generic

kernel version for testing.

7.4.3 Experimental Steps

Deploy two performance test Pods on the same node. If there are multiple machines in the cluster, you need to specify

nodeSelector :

Enter one of the Pods to start the qperf server, and start the qperf client in another Pod for performance testing:

kubectl create deployment perf --image=kubeovn/perf:dev --replicas=2
deployment.apps/perf created
kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
perf-7697bc6ddf-b2cpv 1/1 Running 0 28s 100.64.0.3 sealos <none> <none>
perf-7697bc6ddf-p2xpt 1/1 Running 0 28s 100.64.0.2 sealos <none> <none>

kubectl exec -it perf-7697bc6ddf-b2cpv sh
/ # qperf

kubectl exec -it perf-7697bc6ddf-p2xpt sh
/ # qperf -t 60 100.64.0.3 -ub -oo msg_size:1:16K:*4 -vu tcp_lat tcp_bw

7.4.2 Prerequisites

- 179/324 - 2025 Kube-OVN Team

https://blogs.vmware.com/networkvirtualization/2022/08/tanzu-service-mesh-acceleration-using-ebpf.html/

Deploy the istio-tcpip-bypass plugin:

Enter the perf client container again for performance testing:

7.4.4 Test Results

According to the test results, the TCP latency will decrease by 40% ~ 60% under different packet sizes, and the throughput will

increase by 40% ~ 80% when the packet size is greater than 1024 bytes.

In the hardware environment under test, when the packet size is less than 512 bytes, the throughput indicator optimized by

eBPF is lower than the throughput under the default configuration. This situation may be related to the TCP aggregation

optimization of the network card under the default configuration. If the application scenario is sensitive to small packet

throughput, you need to test in the corresponding environment Determine whether to enable eBPF optimization. We will also

optimize the throughput of eBPF TCP small packet scenarios in the future.

7.4.5 References

istio-tcpip-bypass

Deep Dive TCP/IP Bypass with eBPF in Service Mesh

Tanzu Service Mesh Acceleration using eBPF

 PDF Slack Support

July 2, 2025

June 20, 2023

GitHub

7.4.6 Comments

kubectl apply -f https://raw.githubusercontent.com/intel/istio-tcpip-bypass/main/bypass-tcpip-daemonset.yaml

kubectl exec -it perf-7697bc6ddf-p2xpt sh
/ # qperf -t 60 100.64.0.3 -ub -oo msg_size:1:16K:*4 -vu tcp_lat tcp_bw

Packet Size

(byte)

eBPF tcp_lat

(us)

Default tcp_lat

(us)

eBPF tcp_bw (Mb/

s)

Default tcp_bw(Mb/

s)

1 20.2 44.5 1.36 4.27

4 20.2 48.7 5.48 16.7

16 19.6 41.6 21.7 63.5

64 18.8 41.3 96.8 201

256 19.2 36 395 539

1024 18.3 42.4 1360 846

4096 16.5 62.6 4460 2430

16384 20.2 58.8 9600 6900

1.

2.

3.

7.4.4 Test Results

- 180/324 - 2025 Kube-OVN Team

https://github.com/intel/istio-tcpip-bypass
https://events.istio.io/istiocon-2022/sessions/tcpip-bypass-ebpf/
https://blogs.vmware.com/networkvirtualization/2022/08/tanzu-service-mesh-acceleration-using-ebpf.html/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/shane965
https://github.com/shane965

7.5 Cluster Inter-Connection with OVN-IC

Kube-OVN supports interconnecting two Kubernetes cluster Pod networks via OVN-IC, and the Pods in the two clusters can

communicate directly via Pod IPs. Kube-OVN uses tunnels to encapsulate cross-cluster traffic, allowing container networks to

interconnect between two clusters as long as there is a set of IP reachable machines.

This mode of multi-cluster interconnection is for Overlay network. For Underlay network, it needs the underlying infrastructure

to do the inter-connection work.

The OVN-IC method can only achieve cross-cluster connectivity for Pod IPs and cannot complete cross-cluster connectivity for

Services, DNS, and NetworkPolicies. If cross-cluster service discovery capabilities are needed, please consider using Istio or other

cross-cluster service governance projects.

7.5.1 Prerequisites

Clusters configured in versions after 1.11.16 have the cluster interconnection switch turned off by default. You need to mark the

following in the configuration script install.sh :

After opening the switch and deploying the cluster, the component deployment ovn-ic-controller will appear.

The subnet CIDRs within OpenStack and Kubernetes cannot overlap with each other in auto-interconnect mode. If there is overlap,

you need to refer to the subsequent manual interconnection process, which can only connect non-overlapping Subnets.

A set of machines needs to exist that can be accessed by each cluster over the network and used to deploy controllers that

interconnect across clusters.

Each cluster needs to have a set of machines that can access each other across clusters via IP as the gateway nodes.

This solution only connects to the Kubernetes default VPCs.

Limitation

1.

ENABLE_IC=true

2.

3.

4.

5.

7.5 Cluster Inter-Connection with OVN-IC

- 181/324 - 2025 Kube-OVN Team

https://docs.ovn.org/en/latest/tutorials/ovn-interconnection.html

7.5.2 Deploy a single-node OVN-IC DB

Single node deployment solution 1

Solution 1 is recommended first, supported after Kube-OVN v1.11.16.

This method does not distinguish between "single node" or "multi-node high availability" deployment. The controller will be

deployed on the master node in the form of Deployment. The cluster master node is 1, which is a single node deployment, and

the number of master nodes is multiple, that is, multi-node. Highly available deployment.

First get the script install-ovn-ic.sh and use the following command:

Execute the command installation, where TS_NUM represents the number of ECMP Paths connected to the cluster:

The output of successful execution is as follows:

You can view the status of the current interconnected controller through the kubectl ko icsbctl show command. The command is

as follows:

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install-ic-server.sh

sed 's/VERSION=.*/VERSION=v1.14.4/' dist/images/install-ic-server.sh | TS_NUM=3 bash

deployment.apps/ovn-ic-server created
Waiting for deployment spec update to be observed...
Waiting for deployment "ovn-ic-server" rollout to finish: 0 out of 3 new replicas have been updated...
Waiting for deployment "ovn-ic-server" rollout to finish: 0 of 3 updated replicas are available...
Waiting for deployment "ovn-ic-server" rollout to finish: 1 of 3 updated replicas are available...
Waiting for deployment "ovn-ic-server" rollout to finish: 2 of 3 updated replicas are available...
deployment "ovn-ic-server" successfully rolled out
OVN IC Server installed Successfully

kubectl ko icsbctl show
availability-zone az0

gateway 059b5c54-c540-4d77-b009-02d65f181a02
hostname: kube-ovn-worker
type: geneve

ip: 172.18.0.3
port ts-az0

transit switch: ts
address: ["00:00:00:B4:8E:BE 169.254.100.97/24"]

gateway 74ee4b9a-ba48-4a07-861e-1a8e4b9f905f
hostname: kube-ovn-worker2
type: geneve

ip: 172.18.0.2
port ts1-az0

transit switch: ts1
address: ["00:00:00:19:2E:F7 169.254.101.90/24"]

gateway 7e2428b6-344c-4dd5-a0d5-972c1ccec581
hostname: kube-ovn-control-plane
type: geneve

ip: 172.18.0.4
port ts2-az0

transit switch: ts2
address: ["00:00:00:EA:32:BA 169.254.102.103/24"]

availability-zone az1
gateway 034da7cb-3826-4318-81ce-6a877a9bf285

hostname: kube-ovn1-worker
type: geneve

ip: 172.18.0.6
port ts-az1

transit switch: ts
address: ["00:00:00:25:3A:B9 169.254.100.51/24"]

gateway 2531a683-283e-4fb8-a619-bdbcb33539b8
hostname: kube-ovn1-worker2
type: geneve

ip: 172.18.0.5
port ts1-az1

transit switch: ts1
address: ["00:00:00:52:87:F4 169.254.101.118/24"]

gateway b0efb0be-e5a7-4323-ad4b-317637a757c4
hostname: kube-ovn1-control-plane
type: geneve

ip: 172.18.0.8
port ts2-az1

transit switch: ts2
address: ["00:00:00:F6:93:1A 169.254.102.17/24"]

7.5.2 Deploy a single-node OVN-IC DB

- 182/324 - 2025 Kube-OVN Team

Single node deployment solution 2

Deploy the OVN-IC DB on a machine accessible by kube-ovn-controller , This DB will hold the network configuration information

synchronized up from each cluster.

An environment deploying docker can start the OVN-IC DB with the following command.

For deploying a containerd environment instead of docker you can use the following command:

7.5.3 Automatic Routing Mode

In auto-routing mode, each cluster synchronizes the CIDR information of the Subnet under its own default VPC to OVN-IC , so

make sure there is no overlap between the Subnet CIDRs of the two clusters.

Create ovn-ic-config ConfigMap in kube-system Namespace:

enable-ic : Whether to enable cluster interconnection.

az-name : Distinguish the cluster names of different clusters, each interconnected cluster needs to be different.

ic-db-host : Address of the node where the OVN-IC DB is deployed.

ic-nb-port : OVN-IC Northbound Database port, default 6645.

ic-sb-port : OVN-IC Southbound Database port, default 6645.

gw-nodes : The name of the nodes in the cluster interconnection that takes on the work of the gateways, separated by commas.

auto-route : Whether to automatically publish and learn routes.

Note: To ensure the correct operation, the ConfigMap ovn-ic-config is not allowed to be modified. If any parameter needs to be

changed, please delete this ConfigMap, modify it and then apply it again.

Check if the interconnected logical switch ts has been established in the ovn-ic container with the following command:

At each cluster observe if logical routes have learned peer routes:

docker run --name=ovn-ic-db -d --env "ENABLE_OVN_LEADER_CHECK="false"" --network=host --privileged -v /etc/ovn/:/etc/ovn -v /var/run/ovn:/var/run/ovn -v /
var/log/ovn:/var/log/ovn kubeovn/kube-ovn:v1.14.4 bash start-ic-db.sh

ctr -n k8s.io run -d --env "ENABLE_OVN_LEADER_CHECK="false"" --net-host --privileged --mount="type=bind,src=/etc/ovn/,dst=/etc/ovn,options=rbind:rw" --
mount="type=bind,src=/var/run/ovn,dst=/var/run/ovn,options=rbind:rw" --mount="type=bind,src=/var/log/ovn,dst=/var/log/ovn,options=rbind:rw" docker.io/kubeovn/
kube-ovn:v1.14.4 ovn-ic-db bash start-ic-db.sh

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-ic-config
namespace: kube-system

data:
enable-ic: "true"
az-name: "az1"
ic-db-host: "192.168.65.3"
ic-nb-port: "6645"
ic-sb-port: "6646"
gw-nodes: "az1-gw"
auto-route: "true"

•

•

•

•

•

•

•

ovn-ic-sbctl show
availability-zone az1

gateway deee03e0-af16-4f45-91e9-b50c3960f809
hostname: az1-gw
type: geneve

ip: 192.168.42.145
port ts-az1

transit switch: ts
address: ["00:00:00:50:AC:8C 169.254.100.45/24"]

availability-zone az2
gateway e94cc831-8143-40e3-a478-90352773327b

hostname: az2-gw
type: geneve

ip: 192.168.42.149
port ts-az2

transit switch: ts
address: ["00:00:00:07:4A:59 169.254.100.63/24"]

7.5.3 Automatic Routing Mode

- 183/324 - 2025 Kube-OVN Team

Next, you can try ping a Pod IP in Cluster 1 directly from a Pod in Cluster 2 to see if you can work.

For a subnet that does not want to automatically publish routes to the other end, you can disable route broadcasting by

modifying disableInterConnection in the Subnet spec.

7.5.4 Manual Routing Mode

For cases where there are overlapping CIDRs between clusters, and you only want to do partial subnet interconnection, you can

manually publish subnet routing by following the steps below.

Create ovn-ic-config ConfigMap in kube-system Namespace, and set auto-route to false :

Find the address of the remote logical ports in each cluster separately, for later manual configuration of the route:

The output above shows that the remote address from cluster az1 to cluster az2 is 169.254.100.31 and the remote address from

az2 to az1 is 169.254.100.79 .

In this example, the subnet CIDR within cluster az1 is 10.16.0.0/24 and the subnet CIDR within cluster az2 is 10.17.0.0/24 .

Set up a route from cluster az1 to cluster az2 in cluster az1 :

Set up a route to cluster az1 in cluster az2 :

kubectl ko nbctl lr-route-list ovn-cluster
IPv4 Routes

10.42.1.1 169.254.100.45 dst-ip (learned)
10.42.1.3 100.64.0.2 dst-ip
10.16.0.2 100.64.0.2 src-ip
10.16.0.3 100.64.0.2 src-ip
10.16.0.4 100.64.0.2 src-ip
10.16.0.6 100.64.0.2 src-ip

10.17.0.0/16 169.254.100.45 dst-ip (learned)
100.65.0.0/16 169.254.100.45 dst-ip (learned)

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: no-advertise
spec:

cidrBlock: 10.199.0.0/16
disableInterConnection: true

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-ic-config
namespace: kube-system

data:
enable-ic: "true"
az-name: "az1"
ic-db-host: "192.168.65.3"
ic-nb-port: "6645"
ic-sb-port: "6646"
gw-nodes: "az1-gw"
auto-route: "false"

[root@az1 ~]# kubectl ko nbctl show
switch a391d3a1-14a0-4841-9836-4bd930c447fb (ts)

port ts-az1
type: router
router-port: az1-ts

port ts-az2
type: remote
addresses: ["00:00:00:4B:E2:9F 169.254.100.31/24"]

[root@az2 ~]# kubectl ko nbctl show
switch da6138b8-de81-4908-abf9-b2224ec4edf3 (ts)

port ts-az2
type: router
router-port: az2-ts

port ts-az1
type: remote
addresses: ["00:00:00:FB:2A:F7 169.254.100.79/24"]

kubectl ko nbctl lr-route-add ovn-cluster 10.17.0.0/24 169.254.100.31

kubectl ko nbctl lr-route-add ovn-cluster 10.16.0.0/24 169.254.100.79

7.5.4 Manual Routing Mode

- 184/324 - 2025 Kube-OVN Team

7.5.5 Highly Available OVN-IC DB Installation

High availability deployment solution 1

Solution 1 is recommended first, supported after Kube-OVN v1.11.16.

The method is the same as Single node deployment solution 1

High availability deployment solution 2

A highly available cluster can be formed between OVN-IC DB via the Raft protocol, which requires a minimum of 3 nodes for this

deployment model.

First start the leader of the OVN-IC DB on the first node.

Users deploying a docker environment can use the following command:

If you are using containerd you can use the following command:

LOCAL_IP : The IP address of the node where the current container is located.

NODE_IPS : The IP addresses of the three nodes running the OVN-IC database, separated by commas.

Next, deploy the follower of the OVN-IC DB on the other two nodes.

docker environment can use the following command.

If using containerd you can use the following command:

LOCAL_IP : The IP address of the node where the current container is located.

NODE_IPS : The IP addresses of the three nodes running the OVN-IC database, separated by commas.

LEADER_IP : The IP address of the OVN-IC DB leader node.

Specify multiple OVN-IC database node addresses when creating ovn-ic-config for each cluster:

7.5.6 Support cluster interconnection ECMP

The premise controller is deployed according to Single Node Deployment Solution 1

docker run --name=ovn-ic-db -d --env "ENABLE_OVN_LEADER_CHECK="false"" --network=host --privileged -v /etc/ovn/:/etc/ovn -v /var/run/ovn:/var/run/ovn -v /var/
log/ovn:/var/log/ovn -e LOCAL_IP="192.168.65.3" -e NODE_IPS="192.168.65.3,192.168.65.2,192.168.65.1" kubeovn/kube-ovn:v1.14.4 bash start-ic-db.sh

ctr -n k8s.io run -d --env "ENABLE_OVN_LEADER_CHECK="false"" --net-host --privileged --mount="type=bind,src=/etc/ovn/,dst=/etc/ovn,options=rbind:rw" --
mount="type=bind,src=/var/run/ovn,dst=/var/run/ovn,options=rbind:rw" --mount="type=bind,src=/var/log/ovn,dst=/var/log/ovn,options=rbind:rw" --
env="NODE_IPS="192.168.65.3,192.168.65.2,192.168.65.1"" --env="LOCAL_IP="192.168.65.3"" docker.io/kubeovn/kube-ovn:v1.14.4 ovn-ic-db bash start-ic-db.sh

•

•

docker run --name=ovn-ic-db -d --network=host --privileged -v /etc/ovn/:/etc/ovn -v /var/run/ovn:/var/run/ovn -v /var/log/ovn:/var/log/ovn -e
LOCAL_IP="192.168.65.2" -e NODE_IPS="192.168.65.3,192.168.65.2,192.168.65.1" -e LEADER_IP="192.168.65.3" kubeovn/kube-ovn:v1.14.4 bash start-ic-db.sh

ctr -n k8s.io run -d --net-host --privileged --mount="type=bind,src=/etc/ovn/,dst=/etc/ovn,options=rbind:rw" --mount="type=bind,src=/var/run/ovn,dst=/var/run/
ovn,options=rbind:rw" --mount="type=bind,src=/var/log/ovn,dst=/var/log/ovn,options=rbind:rw" --env="NODE_IPS="192.168.65.3,192.168.65.2,192.168.65.1"" --
env="LOCAL_IP="192.168.65.2"" --env="LEADER_IP="192.168.65.3"" docker.io/kubeovn/kube-ovn:v1.14.4 ovn-ic-db bash start-ic-db.sh

•

•

•

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-ic-config
namespace: kube-system

data:
enable-ic: "true"
az-name: "az1"
ic-db-host: "192.168.65.3,192.168.65.2,192.168.65.1"
ic-nb-port: "6645"
ic-sb-port: "6646"
gw-nodes: "az1-gw"
auto-route: "true"

7.5.5 Highly Available OVN-IC DB Installation

- 185/324 - 2025 Kube-OVN Team

This solution supports cluster interconnection ECMP by default. The default ECMP path is 3. It also supports modifying the

number of ECMP paths. Use the command:

Just modify the value of the environment variable 'TS_NUM'. TS_NUM represents the number of ECMP Paths accessed between

the two clusters.

7.5.7 Manual Reset

In some cases, the entire interconnection configuration needs to be cleaned up due to configuration errors, you can refer to the

following steps to clean up your environment.

Delete the current ovn-ic-config Configmap:

Delete ts logical switch:

Repeat the same steps at the peer cluster.

7.5.8 Clean OVN-IC

Delete the ovn-ic-config Configmap for all clusters:

Delete all clusters' ts logical switches:

Delete the cluster interconnect controller. If it is a high-availability OVN-IC database deployment, all need to be cleaned up.

If the controller is docker deploy execute command:

If the controller is containerd deploy the command:

If the controller is deployed using deployment ovn-ic-server :

Then clean up the interconnection-related DB on each master node. The command is as follows:

 PDF Slack Support

kubectl edit deployment ovn-ic-server -n kube-system

kubectl -n kube-system delete cm ovn-ic-config

kubectl ko nbctl ls-del ts

kubectl -n kube-system delete cm ovn-ic-config

kubectl ko nbctl ls-del ts

docker stop ovn-ic-db
docker rm ovn-ic-db

ctr -n k8s.io task kill ovn-ic-db
ctr -n k8s.io containers rm ovn-ic-db

kubectl delete deployment ovn-ic-server -n kube-system

rm -f /etc/origin/ovn/ovn_ic_nb_db.db
rm -f /etc/origin/ovn/ovn_ic_sb_db.db

7.5.7 Manual Reset

- 186/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 30, 2025

May 24, 2022

GitHub

7.5.9 Comments

7.5.9 Comments

- 187/324 - 2025 Kube-OVN Team

https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater

7.6 Cluster Inter-Connection with Submariner

Submariner is an open source networking component that connects multiple Kubernetes cluster Pod and Service networks which

can help Kube-OVN interconnect multiple clusters.

Compared to OVN-IC, Submariner can connect Kube-OVN and non-Kube-OVN cluster networks, and Submariner can provide

cross-cluster capability for services. However, Submariner currently only enables the default subnets to be connected, and

cannot selectively connect multiple subnets.

7.6.1 Prerequisites

The Service CIDRs of the two clusters and the CIDR of the default Subnet cannot overlap.

7.6.2 Install Submariner

Download the subctl binary and deploy it to the appropriate path:

Change kubeconfig context to the cluster that need to deploy submariner-broker :

In this document the default subnet CIDR for cluster0 is 10.16.0.0/16 and the join subnet CIDR for cluster0 is 100.64.0.0/16 ,

the default subnet CIDR for cluster1 is 11.16.0.0/16 and the join subnet CIDR for cluster1 is 100.68.0.0/16 .

Switch kubeconfig to cluster0 to register the cluster to the broker, and register the gateway node:

Switch kubeconfig to cluster1 to register the cluster to the broker, and register the gateway node:

Next, you can start Pods in each of the two clusters and try to access each other using IPs.

Network communication problems can be diagnosed by using the subctl command:

For more Submariner operations please read Submariner Usage.

 PDF Slack Support

March 23, 2023

May 24, 2022

GitHub

•

curl -Ls https://get.submariner.io | bash
export PATH=$PATH:~/.local/bin
echo export PATH=\$PATH:~/.local/bin >> ~/.profile

subctl deploy-broker

subctl join broker-info.subm --clusterid cluster0 --clustercidr 100.64.0.0/16,10.16.0.0/16 --natt=false --cable-driver vxlan --health-check=false
kubectl label nodes cluster0 submariner.io/gateway=true

subctl join broker-info.subm --clusterid cluster1 --clustercidr 100.68.0.0/16,11.16.0.0/16 --natt=false --cable-driver vxlan --health-check=false
kubectl label nodes cluster1 submariner.io/gateway=true

subctl show all
subctl diagnose all

7.6 Cluster Inter-Connection with Submariner

- 188/324 - 2025 Kube-OVN Team

https://submariner.io/
https://submariner.io/operations/usage/
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater

7.6.3 Comments

7.6.3 Comments

- 189/324 - 2025 Kube-OVN Team

7.7 Interconnection with Routes in Overlay Mode

In some scenarios, the network environment does not support Underlay mode, but still need Pods and external devices directly

access through IP, then you can use the routing method to connect the container network and the external.

Only Overlay Subnets in default VPC support this method. In this case, the Pod IP goes directly to the underlying network, which

needs to disable IP checks for source and destination addresses.

7.7.1 Prerequisites

In this mode, the host needs to open the ip_forward .

Check if there is a Drop rule in the forward chain in the host iptables that should be modified for container-related traffic.

Due to the possibility of asymmetric routing, the host needs to allow packets with a ct status of INVALID .

7.7.2 Steps

For subnets that require direct external routing, you need to set natOutgoing of the subnet to false to turn off nat mapping and

make the Pod IP directly accessible to the external network.

At this point, the Pod's packets can reach the peer node via the host route, but the peer node does not yet know where the return

packets should be sent to and needs to add a return route.

If the peer host and the container host are on the same Layer 2 network, we can add a static route directly to the peer host to

point the next hop of the container network to any machine in the Kubernetes cluster.

10.166.0.0/16 is the container subnet CIDR, and 192.168.2.10 is one node in the Kubernetes cluster.

If the peer host and the container host are not in the same layer 2 network, you need to configure the corresponding rules on the

router.

Note: Specifying an IP for a single node may lead to single point of failure. To achieve fast failover, Keepalived can be used to set

up a VIP for multiple nodes, and the next hop of the route can be directed to the VIP.

In some virtualized environments, the virtual network identifies asymmetric traffic as illegal traffic and drops it. In this case, you

need to adjust the gatewayType of the Subnet to centralized and set the next hop to the IP of the gatewayNode node during route

setup.

•

•

•

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: routed
spec:

protocol: IPv4
cidrBlock: 10.166.0.0/16
default: false
excludeIps:
- 10.166.0.1
gateway: 10.166.0.1
gatewayType: distributed
natOutgoing: false

ip route add 10.166.0.0/16 via 192.168.2.10 dev eth0

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: routed
spec:

protocol: IPv4
cidrBlock: 10.166.0.0/16
default: false
excludeIps:
- 10.166.0.1
gateway: 10.166.0.1
gatewayType: centralized
gatewayNode: "node1"
natOutgoing: false

7.7 Interconnection with Routes in Overlay Mode

- 190/324 - 2025 Kube-OVN Team

If you still want to perform NAT processing for some traffic, such as traffic accessing the Internet, please refer to the Default

VPC NAT Policy Rule.

 PDF Slack Support

September 1, 2023

July 6, 2022

GitHub

7.7.3 Comments

7.7.3 Comments

- 191/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.8 BGP Support

Kube-OVN supports broadcasting the IP address of Pods/Subnets/Services/EIPs to the outside world via the BGP protocol.

To use this feature on Pods/Subnets/Services, you need to install kube-ovn-speaker on specific (or all) nodes and add the

corresponding annotation to the Pod or Subnet that needs to be exposed to the outside world.

Kube-OVN also supports broadcasting the IP address of services of type ClusterIP via the same annotation.

To use this feature on EIPs, you need to create your NAT Gateway with special parameters to enable the BGP speaker sidecar.

See Publishing EIPs for more information.

7.8.1 Installing kube-ovn-speaker

kube-ovn-speaker uses GoBGP to publish routing information to the outside world and to set the next-hop route to itself.

Since the nodes where kube-ovn-speaker is deployed need to carry return traffic, specific labeled nodes need to be selected for

deployment:

When there are multiple instances of kube-ovn-speaker, each of them will publish routes to the outside world, the upstream

router needs to support multi-path ECMP.

Download the corresponding yaml:

Modify the corresponding configuration in yaml:

If you only have one switch:

If you have a pair of switches:

neighbor-address : The address of the BGP Peer, usually the router gateway address.

neighbor-as : The AS number of the BGP Peer.

cluster-as : The AS number of the container network.

Apply the YAML:

7.8.2 Publishing Pod/Subnet Routes

To use BGP for external routing on subnets, first set natOutgoing to false for the corresponding Subnet to allow the Pod IP to

enter the underlying network directly.

Add annotation to publish routes:

kubectl label nodes speaker-node-1 ovn.kubernetes.io/bgp=true
kubectl label nodes speaker-node-2 ovn.kubernetes.io/bgp=true

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/yamls/speaker.yaml

- --neighbor-address=10.32.32.254
- --neighbor-ipv6-address=2409:AB00:AB00:2000::AFB:8AFE
- --neighbor-as=65030
- --cluster-as=65000

- --neighbor-address=10.32.32.252,10.32.32.253
- --neighbor-ipv6-address=2409:AB00:AB00:2000::AFB:8AFC,2409:AB00:AB00:2000::AFB:8AFD
- --neighbor-as=65030
- --cluster-as=65000

•

•

•

kubectl apply -f speaker.yaml

kubectl annotate pod sample ovn.kubernetes.io/bgp=true
kubectl annotate subnet ovn-default ovn.kubernetes.io/bgp=true

7.8 BGP Support

- 192/324 - 2025 Kube-OVN Team

https://osrg.github.io/gobgp/

Delete annotation to disable the publishing:

See Announcement Policies for the announcement behavior depending on the policy set in the annotation.

7.8.3 Publishing Services of type ClusterIP

To announce the ClusterIP of services to the outside world, the kube-ovn-speaker option announce-cluster-ip needs to be set to

true . See the advanced options for more details.

Set the annotation to enable publishing:

Delete annotation to disable the publishing:

The speakers will all start announcing the ClusterIP of that service to the outside world.

7.8.4 Publishing EIPs

EIPs can be announced by the NAT gateways to which they are attached.

There are 2 announcement modes:

ARP: the NAT gateway uses ARP to advertise the EIPs attached to itself, this mode is always enabled

BGP: the NAT gateway provisions a sidecar to publish the EIPs to another BGP speaker

When BGP is enabled on a VpcNatGateway a new BGP speaker sidecar gets injected to it. When the gateway is in BGP mode, the

behaviour becomes cumulative with the ARP mode. This means that EIPs will be announced by BGP but also keep being

advertised using traditional ARP.

To add BGP capabilities to NAT gateways, we first need to create a new NetworkAttachmentDefinition that can be attached to our

BGP speaker sidecars. This NAD will reference a provider shared by a Subnet in the default VPC (in which the Kubernetes API is

running).

This will enable the sidecar to reach the K8S API, automatically detecting new EIPs added to the gateway. This operation only

needs to be done once. All the NAT gateways will use this provider from now on. This is the same principle used for the CoreDNS

in a custom VPC, which means you can reuse that NAD if you've already done that setup before.

Create a NetworkAttachmentDefinition and a Subnet with the same provider . The name of the provider needs to be of the form

nadName.nadNamespace.ovn :

The ovn-vpc-nat-config needs to be modified to reference our new provider and the image used by the BGP speaker:

kubectl annotate pod sample ovn.kubernetes.io/bgp-
kubectl annotate subnet ovn-default ovn.kubernetes.io/bgp-

kubectl annotate service sample ovn.kubernetes.io/bgp=true

kubectl annotate service sample ovn.kubernetes.io/bgp-

•

•

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: api-ovn-nad
namespace: default

spec:
config: '{

"cniVersion": "0.3.0",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "api-ovn-nad.default.ovn"

}'

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: vpc-apiserver-subnet
spec:

protocol: IPv4
cidrBlock: 100.100.100.0/24
provider: api-ovn-nad.default.ovn

7.8.3 Publishing Services of type ClusterIP

- 193/324 - 2025 Kube-OVN Team

Some RBAC needs to be added so that the NAT gateways can poll the Kubernetes API, apply the following configuration:

The NAT gateway(s) now needs to be created with BGP enabled so that the speaker sidecar gets created along it:

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-vpc-nat-config
namespace: kube-system

data:
apiNadProvider: api-ovn-nad.default.ovn # What NetworkAttachmentDefinition provider to use so that the sidecar

can access the K8S API, as it can't by default due to VPC segmentation
bgpSpeakerImage: docker.io/kubeovn/kube-ovn:v1.13.0 # Sets the BGP speaker image used
image: docker.io/kubeovn/vpc-nat-gateway:v1.13.0

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: system:vpc-nat-gw
rules:

- apiGroups:
- ""

resources:
- services
- pods

verbs:
- list
- watch

- apiGroups:
- kubeovn.io

resources:
- iptables-eips
- subnets
- vpc-nat-gateways

verbs:
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"

labels:
kubernetes.io/bootstrapping: rbac-defaults

name: vpc-nat-gw
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:vpc-nat-gw

subjects:
- kind: ServiceAccount

name: vpc-nat-gw
namespace: kube-system

apiVersion: v1
kind: ServiceAccount
metadata:

name: vpc-nat-gw
namespace: kube-system

kind: VpcNatGateway
apiVersion: kubeovn.io/v1
metadata:

name: vpc-natgw
spec:

vpc: vpc1
subnet: net1
lanIp: 10.0.1.10
bgpSpeaker:

enabled: true
asn: 65500
remoteAsn: 65000
neighbors:

- 100.127.4.161
- fd:01::1

enableGracefulRestart: true # Optional
routerId: 1.1.1.1 # Optional
holdTime: 1m # Optional
password: "password123" # Optional
extraArgs: # Optional, passed directly to the BGP speaker

- -v5 # Enables verbose debugging of the BGP speaker sidecar
selector:

- "kubernetes.io/os: linux"
externalSubnets:
- ovn-vpc-external-network # Network on which we'll speak BGP and receive/send traffic to the outside world

BGP neighbors need to be on that network

7.8.4 Publishing EIPs

- 194/324 - 2025 Kube-OVN Team

This gateway is now capable of announcing any EIP that gets attached to it as long as it has the BGP annotation:

7.8.5 Announcement policies

There are 2 policies used by kube-ovn-speaker to announce the routes:

Cluster: this policy makes the Pod IPs/Subnet CIDRs be announced from every speaker, whether there's Pods that have that

specific IP or that are part of the Subnet CIDR on that node. In other words, traffic may enter from any node hosting a speaker,

and then be internally routed in the cluster to the actual Pod. In this configuration extra hops might be used. This is the default

policy for Pods and Subnets.

Local: this policy makes the Pod IPs be announced only from speakers on nodes that are actively hosting them. In other words,

traffic will only enter from the node hosting the Pod marked as needing BGP advertisement, or from the node hosting a Pod

with an IP belonging to a Subnet marked as needing BGP advertisement. This makes the network path shorter as external

traffic arrives directly to the physical host of the Pod.

NOTE: You'll probably need to run kube-ovn-speaker on every node for the Local policy to work. If a Pod you're trying to

announce lands on a node with no speaker on it, its IP will simply not be announced.

The default policy used is Cluster . Policies can be overridden for each Pod/Subnet using the ovn.kubernetes.io/bgp annotation:

ovn.kubernetes.io/bgp=cluster or the default ovn.kubernetes.io/bgp=yes will use policy Cluster

ovn.kubernetes.io/bgp=local will use policy Local

NOTE: Announcement of Services of type ClusterIP doesn't support any policy other than Cluster as routing to the actual pod is

handled by a daemon such as kube-proxy . The annotation for Services only supports value yes and not cluster .

7.8.6 BGP Advanced Options

kube-ovn-speaker supports more BGP parameters for advanced configuration, which can be adjusted by users according to their

network environment:

announce-cluster-ip : Whether to publish routes for Services of type ClusterIP to the public, default is false .

auth-password : The access password for the BGP peer.

holdtime : The heartbeat detection time between BGP neighbors. Neighbors with no messages after the change time will be

removed, the default is 90 seconds.

graceful-restart : Whether to enable BGP Graceful Restart.

graceful-restart-time : BGP Graceful restart time refer to RFC4724 3.

graceful-restart-deferral-time : BGP Graceful restart deferral time refer to RFC4724 4.1.

passivemode : The Speaker runs in Passive mode and does not actively connect to the peer.

ebgp-multihop : The TTL value of EBGP Peer, default is 1.

7.8.7 BGP routes debug

 PDF Slack Support

kubectl annotate eip sample ovn.kubernetes.io/bgp=true

•

•

•

•

•

•

•

•

•

•

•

•

show peer neighbor
gobgp neighbor

show announced routes to one peer
gobgp neighbor 10.32.32.254 adj-out

7.8.5 Announcement policies

- 195/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

October 15, 2024

June 14, 2022

GitHub

7.8.8 Comments

7.8.8 Comments

- 196/324 - 2025 Kube-OVN Team

https://github.com/KillMaster9
https://github.com/KillMaster9
https://github.com/oilbeater
https://github.com/oilbeater

7.9 Integrating MetalLB with Kube-OVN Underlay

MetalLB is an open-source project that provides a network load balancer implementation for Kubernetes clusters, enabling

network load balancing functionality for Service objects in Kubernetes clusters.

This document describes how to integrate MetalLB with Kube-OVN's Underlay subnet mode.

7.9.1 Feature Introduction

Starting from version 1.14.0, Kube-OVN supports the integration of MetalLB with Underlay subnets, primarily used in the

following scenarios:

Directly using MetalLB-assigned IPs as external access addresses in physical networks

Service backend Pods and MetalLB VIPs are in the same Underlay network

Preserve client source IP and support local forwarding without SNAT

•

•

•

7.9 Integrating MetalLB with Kube-OVN Underlay

- 197/324 - 2025 Kube-OVN Team

https://metallb.universe.tf/

7.9.2 Working Principle

Figure 1: Network Traffic Path for MetalLB VIP Integration with Kube-OVN Underlay

The traffic flow for MetalLB integration with Kube-OVN Underlay is as follows:

External client sends requests to the target VIP (e.g., 10.180.204.252), which is announced by MetalLB in L2 mode. In this traffic

diagram, Node1 announces the MetalLB VIP

Requests reach the node announcing the VIP through the physical network, entering the underlay0.341 network interface on the

node

Traffic reaches the br-provider bridge on the node, serving as the entry point for the Underlay network

br-provider forwards traffic to the OVN logical network through OpenFlow flow table rules

Traffic enters the underlay subnet logical switch, processed by the OVN load balancer (ovn lb dnat)

OVN load balancer forwards to any Pod on the local node

The entire subnet segment is 10.180.204.0/24, including both the VIP and backend Pod IP addresses within this range.

1.

2.

3.

4.

5.

6.

7.9.2 Working Principle

- 198/324 - 2025 Kube-OVN Team

7.9.3 Prerequisites

Kube-OVN controller enabled with --enable-ovn-lb-prefer-local=true option

Underlay subnet configured with enableExternalLBAddress=true

MetalLB address pool IP range added to Underlay subnet's excludeIps

7.9.4 Deployment Steps

1. Deploy Kube-OVN

Deploy Kube-OVN following the standard procedure, ensuring the Kube-OVN controller is enabled with --enable-ovn-lb-prefer-

local=true and --ls-ct-skip-dst-lport-ips=false options:

Add the following parameters to the command line:

2. Configure Underlay Subnet

Create or modify the Underlay subnet to enable external LoadBalancer address support and exclude the IP range that MetalLB

will use in excludeIps:

3. Deploy MetalLB

Deploy MetalLB following the MetalLB official documentation:

Configure MetalLB's address pool and L2 advertisement mode:

•

•

•

Add parameters to the kube-ovn-controller Deployment configuration
kubectl edit deployment -n kube-system kube-ovn-controller

--enable-ovn-lb-prefer-local=true
--ls-ct-skip-dst-lport-ips=false

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: underlay-subnet
spec:

protocol: IPv4
provider: ovn
cidrBlock: 10.180.204.0/24 # Matches the subnet segment in the diagram
gateway: 10.180.204.1
excludeIps:
- 10.180.204.250
- 10.180.204.251
- 10.180.204.252 # MetalLB address pool range, includes the VIP 10.180.204.252
natOutgoing: false
enableExternalLBAddress: true # When enabled, IPs in the subnet's CIDR can be used as MetalLB VIPs

kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.13.7/config/manifests/metallb-native.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:

name: underlay-pool
namespace: metallb-system

spec:
addresses:
- 10.180.204.250-10.180.204.254 # Includes the VIP 10.180.204.252

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:

name: l2-advert
namespace: metallb-system

spec:
ipAddressPools:
- underlay-pool

7.9.3 Prerequisites

- 199/324 - 2025 Kube-OVN Team

https://metallb.universe.tf/installation/

4. Create LoadBalancer Service

Create a LoadBalancer type Service to direct traffic to Pods in the Underlay subnet:

7.9.5 Testing and Verification

Verify that the Service has obtained the MetalLB-assigned IP address:

You should see the assigned IP address (e.g., 10.180.204.252) in the EXTERNAL-IP column.

Access the Service IP address from external:

Verify traffic is preferentially forwarded to local node Pods:

You can verify that the local preference feature is working by checking the Service's endpoints and Pod distribution:

Verify client IP preservation:

Check the access logs in the nginx Pod to confirm that the recorded client IP is the original client's real IP, not the SNAT-

translated IP:

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: nginx

name: deploy-169402624
spec:

replicas: 3
selector:

matchLabels:
app: nginx

template:
metadata:

annotations:
ovn.kubernetes.io/logical_switch: underlay-subnet

labels:
app: nginx

spec:
containers:
- args:

- netexec
- --http-port
- "80"
image: kubeovn/agnhost:2.47
imagePullPolicy: IfNotPresent
name: nginx

apiVersion: v1
kind: Service
metadata:

name: nginx-lb
spec:

externalTrafficPolicy: Local
ipFamilies:
- IPv4
ipFamilyPolicy: PreferDualStack
ports:
- port: 80

protocol: TCP
targetPort: 80

selector:
app: nginx

type: LoadBalancer

1.

kubectl get svc nginx-lb

1.

curl http://10.180.204.252

1.

Check Service endpoints
kubectl get endpoints nginx-lb

Check which nodes the Pods are distributed on
kubectl get pods -l app=nginx -o wide

1.

kubectl exec -it $(kubectl get pods -l app=nginx -o name | head -n1) -- cat /var/log/nginx/access.log

7.9.5 Testing and Verification

- 200/324 - 2025 Kube-OVN Team

7.9.6 Notes

The MetalLB address pool range must be a subset of the Underlay subnet CIDR and must be explicitly excluded in the Underlay

subnet's excludeIps field to avoid IP allocation conflicts.

MetalLB must use the same network interface as the Kube-OVN Underlay subnet (e.g., underlay0.341 in the example). This interface

should be configured as a VLAN sub-interface to ensure proper broadcasting of ARP messages with VLAN tags for correct MetalLB

VIP announcement.

To enable local preference, two conditions must be met: - Kube-OVN controller enabled with --enable-ovn-lb-prefer-local=true

parameter - Service configured with externalTrafficPolicy: Local

 PDF Slack Support

July 30, 2025

April 2, 2025

GitHub

7.9.7 Comments

IP Address Pool Configuration

Network Interface Requirements

Local Traffic Policy

7.9.6 Notes

- 201/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow
https://github.com/changluyi
https://github.com/changluyi

7.10 Integration with Cilium

Cilium is an eBPF-based networking and security component. Kube-OVN uses the CNI Chaining mode to enhance existing

features. Users can use both the rich network abstraction capabilities of Kube-OVN and the monitoring and security capabilities

that come with eBPF.

By integrating Cilium, Kube-OVN users can have the following gains:

Richer and more efficient security policies.

Hubble-based monitoring and UI.

7.10.1 Prerequisites

Linux kernel version above 4.19 or other compatible kernel for full eBPF capability support.

Install Helm in advance to prepare for the installation of Cilium, please refer to Installing Helm to deploy Helm.

7.10.2 Configure Kube-OVN

In order to fully utilize the security capabilities of Cilium, you need to disable the networkpolicy feature within Kube-OVN and

adjust the CNI configuration priority.

Change the following variables in the install.sh script:

If the deployment is complete, you can adjust the args of kube-ovn-controller :

Modify the kube-ovn-cni args to adjust the CNI configuration priority:

•

•

1.

2.

ENABLE_NP=false
CNI_CONFIG_PRIORITY=10

args:
- --enable-np=false

7.10 Integration with Cilium

- 202/324 - 2025 Kube-OVN Team

https://cilium.io/
https://docs.cilium.io/en/stable/installation/cni-chaining/
https://helm.sh/docs/intro/install/

Adjust the Kube-OVN cni configuration name on each node:

7.10.3 Deploy Cilium

Create the chaining.yaml configuration file to use Cilium's generic-veth mode:

Installation of the chaining config:

Deploying Cilium with Helm:

Confirm that the Cilium installation was successful:

args:
- --cni-conf-name=10-kube-ovn.conflist

mv /etc/cni/net.d/01-kube-ovn.conflist /etc/cni/net.d/10-kube-ovn.conflist

apiVersion: v1
kind: ConfigMap
metadata:

name: cni-configuration
namespace: kube-system

data:
cni-config: |-

{
"name": "generic-veth",
"cniVersion": "0.3.1",
"plugins": [

{
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"ipam": {

"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock"

}
},
{

"type": "portmap",
"snat": true,
"capabilities": {"portMappings": true}

},
{

"type": "cilium-cni"
}

]
}

kubectl apply -f chaining.yaml

helm repo add cilium https://helm.cilium.io/
helm install cilium cilium/cilium --version 1.11.6 \

--namespace kube-system \
--set cni.chainingMode=generic-veth \
--set cni.customConf=true \
--set cni.configMap=cni-configuration \
--set routingMode=native \
--set enableIPv4Masquerade=false \
--set devices="eth+ ovn0 genev_sys_6081 vxlan_sys_4789" \
--set enableIdentityMark=false

cilium status
/¯¯\

/¯¯__/¯¯\ Cilium: OK
__/¯¯__/ Operator: OK
/¯¯__/¯¯\ Hubble: disabled
__/¯¯__/ ClusterMesh: disabled

__/

DaemonSet cilium Desired: 2, Ready: 2/2, Available: 2/2
Deployment cilium-operator Desired: 2, Ready: 2/2, Available: 2/2
Containers: cilium Running: 2

cilium-operator Running: 2
Cluster Pods: 8/11 managed by Cilium
Image versions cilium quay.io/cilium/cilium:v1.10.5@sha256:0612218e28288db360c63677c09fafa2d17edda4f13867bcabf87056046b33bb: 2

cilium-operator quay.io/cilium/operator-generic:v1.10.5@sha256:2d2f730f219d489ff0702923bf24c0002cd93eb4b47ba344375566202f56d972: 2

7.10.3 Deploy Cilium

- 203/324 - 2025 Kube-OVN Team

7.10.4 Using Kube-OVN's NAT gateways with Cilium

Cilium natively runs security checks against the traffic going out of interfaces it manages, including the default interface of

NAT gateways pods. Because the NAT gateway is doing SNAT and DNAT and forwarding the packets to pods within its VPC, the

source address of most traffic coming out of the NAT gateway isn't using its Pod IP(s).

Cilium runs SIP (Source IP) address validation to prevent that. If the source address of a packet doesn't match one of the IP

address of the Pod, the traffic is visibly dropped (can be seen on Hubble as DROPPED traffic).

This feature of Cilium is useful to enhance the network security of the cluster and prevent IP spoofing but it breaks NAT

gateways. To fix this problem, SIP address validation needs to be disabled on Cilium in its Helm Chart by setting the

enableSourceIPVerification value to false :

 PDF Slack Support

April 14, 2025

May 24, 2022

GitHub

7.10.5 Comments

enableSourceIPVerification: false

7.10.4 Using Kube-OVN's NAT gateways with Cilium

- 204/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.11 Cilium NetworkPolicy Support

Kube-OVN currently supports integration with Cilium, and the specific operation can refer to Cilium integration.

After integrating Cilium, you can use Cilium's excellent network policy capabilities to control the access of Pods in the

cluster.The following documents provide integration verification of Cilium L3 and L4 network policy capabilities.

7.11.1 Verification Steps

Create test Pod

Create namespace test . Refer to the following yaml, create Pod with label app=test in namespace test as the destination Pod

for testing access.

Similarly, refer to the following yaml, create Pod with label app=dynamic in namespace default as the Pod for testing access.

View the test Pod and Label information:

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: test

name: test
namespace: test

spec:
replicas: 1
selector:

matchLabels:
app: test

strategy:
rollingUpdate:

maxSurge: 25%
maxUnavailable: 25%

type: RollingUpdate
template:

metadata:
labels:

app: test
spec:

containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: nginx

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: dynamic

name: dynamic
namespace: default

spec:
replicas: 2
selector:

matchLabels:
app: dynamic

strategy:
rollingUpdate:

maxSurge: 25%
maxUnavailable: 25%

type: RollingUpdate
template:

metadata:
creationTimestamp: null
labels:

app: dynamic
spec:

containers:
- image: docker.io/library/nginx:alpine

imagePullPolicy: IfNotPresent
name: nginx

kubectl get pod -o wide --show-labels
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES LABELS
dynamic-7d8d7874f5-9v5c4 1/1 Running 0 28h 10.16.0.35 kube-ovn-worker <none> <none> app=dynamic,pod-
template-hash=7d8d7874f5
dynamic-7d8d7874f5-s8z2n 1/1 Running 0 28h 10.16.0.36 kube-ovn-control-plane <none> <none> app=dynamic,pod-
template-hash=7d8d7874f5
kubectl get pod -o wide -n test --show-labels

7.11 Cilium NetworkPolicy Support

- 205/324 - 2025 Kube-OVN Team

L3 Network Policy Test

Refer to the following yaml, create CiliumNetworkPolicy resource:

At this point, the test Pod in the default namespace cannot access the destination Pod, but the test Pod to the destination Pod in

the test namespace is accessible.

Test results in the default namespace:

Test results in the test namespace:

Look at the Cilium official document explanation, the CiliumNetworkPolicy resource limits the control at the namespace level. For

more information, please refer to Cilium Limitations.

If there is a network policy rule match, only the Pod in the same namespace can access according to the rule, and the Pod in

the other namespace is denied access by default.

If you want to implement cross-namespace access, you need to specify the namespace information in the rule.

Refer to the document, modify the CiliumNetworkPolicy resource, and add namespace information:

Look at the modified CiliumNetworkPolicy resource information:

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES LABELS
dynamic-7d8d7874f5-6dsg6 1/1 Running 0 7h20m 10.16.0.2 kube-ovn-control-plane <none> <none> app=dynamic,pod-
template-hash=7d8d7874f5
dynamic-7d8d7874f5-tjgtp 1/1 Running 0 7h46m 10.16.0.42 kube-ovn-worker <none> <none> app=dynamic,pod-
template-hash=7d8d7874f5
label-test1-77b6764857-swq4k 1/1 Running 0 3h43m 10.16.0.12 kube-ovn-worker <none> <none> app=test1,pod-
template-hash=77b6764857

// As the destination Pod for testing access.
test-54c98bc466-mft5s 1/1 Running 0 8h 10.16.0.41 kube-ovn-worker <none> <none> app=test,pod-
template-hash=54c98bc466

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "l3-rule"
namespace: test

spec:
endpointSelector:

matchLabels:
app: test

ingress:
- fromEndpoints:

- matchLabels:
app: dynamic

kubectl exec -it dynamic-7d8d7874f5-9v5c4 -- bash
bash-5.0# ping -c 3 10.16.0.41
PING 10.16.0.41 (10.16.0.41): 56 data bytes

--- 10.16.0.41 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss

kubectl exec -it -n test dynamic-7d8d7874f5-6dsg6 -- bash
bash-5.0# ping -c 3 10.16.0.41
PING 10.16.0.41 (10.16.0.41): 56 data bytes
64 bytes from 10.16.0.41: seq=0 ttl=64 time=2.558 ms
64 bytes from 10.16.0.41: seq=1 ttl=64 time=0.223 ms
64 bytes from 10.16.0.41: seq=2 ttl=64 time=0.304 ms

--- 10.16.0.41 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.223/1.028/2.558 ms

ingress:
- fromEndpoints:

- matchLabels:
app: dynamic
k8s:io.kubernetes.pod.namespace: default // control the Pod access in other namespace

kubectl get cnp -n test -o yaml l3-rule
apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:

name: l3-rule

7.11.1 Verification Steps

- 206/324 - 2025 Kube-OVN Team

https://docs.cilium.io/en/stable/policy/kubernetes/

Test the Pod access in the default namespace again, and the destination Pod access is normal:

Using the standard Kubernetes network policy networkpolicy, the test results show that Cilium also restricts access within the

same namespace, and cross-namespace access is prohibited.

It is different from Kube-OVN implementation. Kube-OVN supports standard k8s network policy, which restricts the destination

Pod in a specific namespace, but there is no namespace restriction on the source Pod. Any Pod that meets the restriction rules in

any namespace can access the destination Pod.

L4 Network Policy Test

Refer to the following yaml, create CiliumNetworkPolicy resource:

Test the access of the Pod that meets the network policy rules in the same namespace

namespace: test
spec:

endpointSelector:
matchLabels:

app: test
ingress:
- fromEndpoints:

- matchLabels:
app: dynamic

- matchLabels:
app: dynamic
k8s:io.kubernetes.pod.namespace: default

kubectl exec -it dynamic-7d8d7874f5-9v5c4 -n test -- bash
bash-5.0# ping -c 3 10.16.0.41
PING 10.16.0.41 (10.16.0.41): 56 data bytes
64 bytes from 10.16.0.41: seq=0 ttl=64 time=2.383 ms
64 bytes from 10.16.0.41: seq=1 ttl=64 time=0.115 ms
64 bytes from 10.16.0.41: seq=2 ttl=64 time=0.142 ms

--- 10.16.0.41 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.115/0.880/2.383 ms

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
metadata:

name: "l4-rule"
namespace: test

spec:
endpointSelector:

matchLabels:
app: test

ingress:
- fromEndpoints:

- matchLabels:
app: dynamic

toPorts:
- ports:

- port: "80"
protocol: TCP

kubectl exec -it -n test dynamic-7d8d7874f5-6dsg6 -- bash
bash-5.0# ping -c 3 10.16.0.41
PING 10.16.0.41 (10.16.0.41): 56 data bytes

--- 10.16.0.41 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
bash-5.0#
bash-5.0# curl 10.16.0.41:80
<html>
<head>

<title>Hello World!</title>
<link href='//fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<style>
body {

background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;

}
#logo {

margin-bottom: 40px;
}
</style>

</head>
<body>

<h1>Hello World!</h1>

7.11.1 Verification Steps

- 207/324 - 2025 Kube-OVN Team

https://kubernetes.io/zh-cn/docs/concepts/services-networking/network-policies/

The Pod that does not meet the network policy rules in the same namespace cannot access

After the network policy takes effect, cross-namespace access is still prohibited, which is consistent with the L3 network policy

test results.

After the L4 network policy takes effect, ping cannot be used, but TCP access that meets the policy rules can be executed

normally.

About the restriction of ICMP, please refer to the official description L4 Limitation Description.

L7 Network Policy Test

chaining mode, L7 network policy currently has problems. In the Cilium official document, there is an explanation for this

situation, please refer to Generic Veth Chaining.

This problem is tracked using issue 12454, and it has not been resolved yet.

 PDF Slack Support

June 20, 2023

August 2, 2022

GitHub

7.11.2 Comments

<h3>Links found</h3>
<h3>I am on test-54c98bc466-mft5s</h3>
<h3>Cookie =</h3>

KUBERNETES listening in 443 available at tcp://10.96.0.1:443

<h3>my name is hanhouchao!</h3>

<h3> RequestURI='/'</h3>
</body>
</html>

kubectl exec -it -n test label-test1-77b6764857-swq4k -- bash
bash-5.0# ping -c 3 10.16.0.41
PING 10.16.0.41 (10.16.0.41): 56 data bytes

--- 10.16.0.41 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
bash-5.0#
bash-5.0# curl -v 10.16.0.41:80 --connect-timeout 10
* Trying 10.16.0.41:80...
* After 10000ms connect time, move on!
* connect to 10.16.0.41 port 80 failed: Operation timed out
* Connection timeout after 10001 ms
* Closing connection 0
curl: (28) Connection timeout after 10001 ms

7.11.2 Comments

- 208/324 - 2025 Kube-OVN Team

https://docs.cilium.io/en/stable/policy/language/#layer-4-examples
https://docs.cilium.io/en/stable/gettingstarted/cni-chaining-generic-veth/
https://github.com/cilium/cilium/issues/12454
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/shane965
https://github.com/shane965

7.12 Cilium Network Traffic Observation

Kube-OVN supports Cilium integration, please refer to Cilium integration for details.

Cilium provides rich network traffic observation capabilities, and the flow observability is provided by Hubble. Hubble can

observe the traffic across nodes, clusters, and even multi-cluster scenarios.

7.12.1 Install Hubble

In the default Cilium integration installation, the Hubble related components are not installed, so to support traffic observation,

you need to supplement the installation of Hubble on the environment.

Execute the following command to install Hubble using helm:

After installing Hubble, execute cilium status to check the status of the component and confirm that the installation is

successful.

After installing the Hubble component, you need to install the command line to view the traffic information in the environment.

Execute the following command to install Hubble CLI:

7.12.2 Deploy and test

Cilium offers a traffic test deployment solution, you can directly use the official deployment solution to deploy the test.

Execute the command cilium connectivity test , Cilium will automatically create the cilium-test namespace, and deploy the test

under cilium-test.

After the normal deployment, you can view the resource information under the cilium-test namespace, as follows:

helm upgrade cilium cilium/cilium --version 1.11.6 \
--namespace kube-system \
--reuse-values \
--set hubble.relay.enabled=true \
--set hubble.ui.enabled=true

cilium status
/¯¯\

/¯¯__/¯¯\ Cilium: OK
__/¯¯__/ Operator: OK
/¯¯__/¯¯\ Hubble: OK
__/¯¯__/ ClusterMesh: disabled

__/

Deployment hubble-relay Desired: 1, Ready: 1/1, Available: 1/1
Deployment cilium-operator Desired: 2, Ready: 2/2, Available: 2/2
DaemonSet cilium Desired: 2, Ready: 2/2, Available: 2/2
Deployment hubble-ui Desired: 1, Ready: 1/1, Available: 1/1
Containers: cilium Running: 2

hubble-ui Running: 1
hubble-relay Running: 1
cilium-operator Running: 2

Cluster Pods: 16/17 managed by Cilium
Image versions hubble-relay quay.io/cilium/hubble-relay:v1.11.6@sha256:fd9034a2d04d5b973f1e8ed44f230ea195b89c37955ff32e34e5aa68f3ed675a: 1

cilium-operator quay.io/cilium/operator-generic:v1.11.6@sha256:9f6063c7bcaede801a39315ec7c166309f6a6783e98665f6693939cf1701bc17: 2
cilium quay.io/cilium/cilium:v1.11.6@sha256:f7f93c26739b6641a3fa3d76b1e1605b15989f25d06625260099e01c8243f54c: 2
hubble-ui quay.io/cilium/hubble-ui:v0.9.0@sha256:0ef04e9a29212925da6bdfd0ba5b581765e41a01f1cc30563cef9b30b457fea0: 1
hubble-ui quay.io/cilium/hubble-ui-backend:v0.9.0@sha256:000df6b76719f607a9edefb9af94dfd1811a6f1b6a8a9c537cba90bf12df474b: 1

apple@bogon cilium %

curl -L --fail --remote-name-all https://github.com/cilium/hubble/releases/download/v0.10.0/hubble-linux-amd64.tar.gz
sudo tar xzvfC hubble-linux-amd64.tar.gz /usr/local/bin

kubectl get all -n cilium-test
NAME READY STATUS RESTARTS AGE
pod/client-7df6cfbf7b-z5t2j 1/1 Running 0 21s
pod/client2-547996d7d8-nvgxg 1/1 Running 0 21s
pod/echo-other-node-d79544ccf-hl4gg 2/2 Running 0 21s
pod/echo-same-node-5d466d5444-ml7tc 2/2 Running 0 21s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/echo-other-node NodePort 10.109.58.126 <none> 8080:32269/TCP 21s
service/echo-same-node NodePort 10.108.70.32 <none> 8080:32490/TCP 21s

7.12 Cilium Network Traffic Observation

- 209/324 - 2025 Kube-OVN Team

7.12.3 Use the command line to observe traffic

By default, the network traffic observation only provides the traffic observed by the Cilium agent on each node.

Execute the hubble observe command in the Cilium agent pod under the kube-system namespace to view the traffic information on

the node.

After deploying Hubble Relay, Hubble can provide complete cluster-wide network traffic observation.

Configure port forwarding

In order to access the Hubble API normally, you need to create a port forwarding to forward the local request to the Hubble

Service. You can execute the kubectl port-forward deployment/hubble-relay -n kube-system 4245:4245 command to open the port

forwarding in the current terminal.

The port forwarding configuration can refer to Port Forwarding.

kubectl port-forward is a blocking command, you can open a new terminal to execute the following command to observe the

traffic information.

After configuring the port forwarding, execute the hubble status command in the terminal. If there is an output similar to the

following, the port forwarding configuration is correct, and you can use the command line to observe the traffic.

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/client 1/1 1 1 21s
deployment.apps/client2 1/1 1 1 21s
deployment.apps/echo-other-node 1/1 1 1 21s
deployment.apps/echo-same-node 1/1 1 1 21s

NAME DESIRED CURRENT READY AGE
replicaset.apps/client-7df6cfbf7b 1 1 1 21s
replicaset.apps/client2-547996d7d8 1 1 1 21s
replicaset.apps/echo-other-node-d79544ccf 1 1 1 21s
replicaset.apps/echo-same-node-5d466d5444 1 1 1 21s

kubectl get pod -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
cilium-d6h56 1/1 Running 0 2d20h 172.18.0.2 kube-ovn-worker <none> <none>
cilium-operator-5887f78bbb-c7sb2 1/1 Running 0 2d20h 172.18.0.2 kube-ovn-worker <none> <none>
cilium-operator-5887f78bbb-wj8gt 1/1 Running 0 2d20h 172.18.0.3 kube-ovn-control-plane <none> <none>
cilium-tq5xb 1/1 Running 0 2d20h 172.18.0.3 kube-ovn-control-plane <none> <none>
kube-ovn-pinger-7lgk8 1/1 Running 0 21h 10.16.0.19 kube-ovn-control-plane <none> <none>
kube-ovn-pinger-msvcn 1/1 Running 0 21h 10.16.0.18 kube-ovn-worker <none> <none>

kubectl exec -it -n kube-system cilium-d6h56 -- bash
root@kube-ovn-worker:/home/cilium# hubble observe --from-namespace kube-system
Jul 29 03:24:25.551: kube-system/kube-ovn-pinger-msvcn:35576 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: ACK, PSH)
Jul 29 03:24:25.561: kube-system/kube-ovn-pinger-msvcn:35576 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: RST)
Jul 29 03:24:25.561: kube-system/kube-ovn-pinger-msvcn:35576 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: ACK, RST)
Jul 29 03:24:25.572: kube-system/kube-ovn-pinger-msvcn:35578 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: SYN)
Jul 29 03:24:25.572: kube-system/kube-ovn-pinger-msvcn:35578 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: ACK)
Jul 29 03:24:25.651: kube-system/kube-ovn-pinger-msvcn:35578 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: ACK, PSH)
Jul 29 03:24:25.661: kube-system/kube-ovn-pinger-msvcn:35578 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: RST)
Jul 29 03:24:25.661: kube-system/kube-ovn-pinger-msvcn:35578 -> 172.18.0.3:6642 to-stack FORWARDED (TCP Flags: ACK, RST)
Jul 29 03:24:25.761: kube-system/kube-ovn-pinger-msvcn:52004 -> 172.18.0.3:6443 to-stack FORWARDED (TCP Flags: ACK, PSH)
Jul 29 03:24:25.779: kube-system/kube-ovn-pinger-msvcn -> kube-system/kube-ovn-pinger-7lgk8 to-stack FORWARDED (ICMPv4 EchoRequest)
Jul 29 03:24:25.779: kube-system/kube-ovn-pinger-msvcn <- kube-system/kube-ovn-pinger-7lgk8 to-endpoint FORWARDED (ICMPv4 EchoReply)
Jul 29 03:24:25.866: kube-system/hubble-ui-7596f7ff6f-7j6f2:55836 <- kube-system/hubble-relay-959988db5-zc5vv:4245 to-stack FORWARDED (TCP Flags: ACK)
Jul 29 03:24:25.866: kube-system/hubble-ui-7596f7ff6f-7j6f2:55836 <- kube-system/hubble-relay-959988db5-zc5vv:80 to-endpoint FORWARDED (TCP Flags: ACK)
Jul 29 03:24:25.866: kube-system/hubble-ui-7596f7ff6f-7j6f2:55836 -> kube-system/hubble-relay-959988db5-zc5vv:4245 to-stack FORWARDED (TCP Flags: ACK)
Jul 29 03:24:25.866: kube-system/hubble-ui-7596f7ff6f-7j6f2:55836 -> kube-system/hubble-relay-959988db5-zc5vv:4245 to-endpoint FORWARDED (TCP Flags: ACK)
Jul 29 03:24:25.975: kube-system/kube-ovn-pinger-7lgk8 -> kube-system/kube-ovn-pinger-msvcn to-endpoint FORWARDED (ICMPv4 EchoRequest)
Jul 29 03:24:25.975: kube-system/kube-ovn-pinger-7lgk8 <- kube-system/kube-ovn-pinger-msvcn to-stack FORWARDED (ICMPv4 EchoReply)
Jul 29 03:24:25.979: kube-system/kube-ovn-pinger-msvcn -> 172.18.0.3 to-stack FORWARDED (ICMPv4 EchoRequest)
Jul 29 03:24:26.037: kube-system/coredns-6d4b75cb6d-lbgjg:36430 -> 172.18.0.3:6443 to-stack FORWARDED (TCP Flags: ACK)
Jul 29 03:24:26.282: kube-system/kube-ovn-pinger-msvcn -> 172.18.0.2 to-stack FORWARDED (ICMPv4 EchoRequest)

hubble status
Healthcheck (via localhost:4245): Ok
Current/Max Flows: 8,190/8,190 (100.00%)
Flows/s: 22.86
Connected Nodes: 2/2

7.12.3 Use the command line to observe traffic

- 210/324 - 2025 Kube-OVN Team

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Use the command line to observe traffic

Execute the hubble observe command in the terminal to view the traffic information of the cluster.

The traffic observed by the cilium-test namespace is as follows:

Pay attention to the hubble observe command display result, which is the traffic information queried when the current command

line is executed. Executing the command line multiple times can view different traffic information. For more detailed observation

information, you can execute the hubble help observe command to view the detailed usage of Hubble CLI.

7.12.4 Use UI to observe traffic

Execute the cilium status command to confirm that the Hubble UI has been successfully installed. In the second step of the

Hubble installation, the installation of the UI has been supplemented.

Execute the command cilium hubble ui to automatically create port forwarding and map the hubble-ui service to the local port.

When the command is executed normally, the local browser will be automatically opened and jump to the Hubble UI interface. If

it does not jump automatically, enter http://localhost:12000 in the browser to open the UI observation interface.

7.12.4 Use UI to observe traffic

- 211/324 - 2025 Kube-OVN Team

On the top left of the UI, select the cilium-test namespace to view the test traffic information provided by Cilium.

7.12.5 Hubble Traffic Monitoring

Hubble component provides monitoring of Pod network behavior in the cluster. In order to support viewing the monitoring data

provided by Hubble, you need to enable monitoring statistics.

Refer to the following command to supplement the hubble.metrics.enabled configuration item:

After the deployment is completed, you can view the monitoring data provided by Hubble through the hubble-metrics service.

Execute the following command to view the monitoring data:

helm upgrade cilium cilium/cilium --version 1.11.6 \
--namespace kube-system \
--reuse-values \
--set hubble.relay.enabled=true \
--set hubble.ui.enabled=true \
--set hubble.metrics.enabled="{dns,drop,tcp,flow,icmp,http}"

curl 172.18.0.2:9091/metrics
HELP hubble_drop_total Number of drops
TYPE hubble_drop_total counter
hubble_drop_total{protocol="ICMPv6",reason="Unsupported L3 protocol"} 2
HELP hubble_flows_processed_total Total number of flows processed
TYPE hubble_flows_processed_total counter
hubble_flows_processed_total{protocol="ICMPv4",subtype="to-endpoint",type="Trace",verdict="FORWARDED"} 335
hubble_flows_processed_total{protocol="ICMPv4",subtype="to-stack",type="Trace",verdict="FORWARDED"} 335
hubble_flows_processed_total{protocol="ICMPv6",subtype="",type="Drop",verdict="DROPPED"} 2
hubble_flows_processed_total{protocol="TCP",subtype="to-endpoint",type="Trace",verdict="FORWARDED"} 8282
hubble_flows_processed_total{protocol="TCP",subtype="to-stack",type="Trace",verdict="FORWARDED"} 6767
hubble_flows_processed_total{protocol="UDP",subtype="to-endpoint",type="Trace",verdict="FORWARDED"} 1642
hubble_flows_processed_total{protocol="UDP",subtype="to-stack",type="Trace",verdict="FORWARDED"} 1642
HELP hubble_icmp_total Number of ICMP messages
TYPE hubble_icmp_total counter
hubble_icmp_total{family="IPv4",type="EchoReply"} 335
hubble_icmp_total{family="IPv4",type="EchoRequest"} 335
hubble_icmp_total{family="IPv4",type="RouterSolicitation"} 2
HELP hubble_tcp_flags_total TCP flag occurrences
TYPE hubble_tcp_flags_total counter
hubble_tcp_flags_total{family="IPv4",flag="FIN"} 2043
hubble_tcp_flags_total{family="IPv4",flag="RST"} 301
hubble_tcp_flags_total{family="IPv4",flag="SYN"} 1169
hubble_tcp_flags_total{family="IPv4",flag="SYN-ACK"} 1169

7.12.5 Hubble Traffic Monitoring

- 212/324 - 2025 Kube-OVN Team

 PDF Slack Support

June 20, 2023

August 2, 2022

GitHub

7.12.6 Comments

7.12.6 Comments

- 213/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/shane965
https://github.com/shane965

7.13 External Gateway

In some scenarios, all container traffic access to the outside needs to be managed and audited through an external gateway.

Kube-OVN can forward outbound traffic to the corresponding external gateway by configuring the appropriate routes in the

subnet.

7.13.1 Usage

natOutgoing : needs to be set to false .

externalEgressGateway : Set to the address of the external gateway, which needs to be in the same Layer 2 reachable domain as

the gateway node.

policyRoutingTableID : The TableID of the local policy routing table used needs to be different for each subnet to avoid conflicts.

policyRoutingPriority : Route priority, in order to avoid subsequent user customization of other routing operations conflict,

here you can specify the route priority. If no special needs, you can fill in any value.

 PDF Slack Support

July 3, 2022

May 24, 2022

GitHub

7.13.2 Comments

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: external
spec:

cidrBlock: 172.31.0.0/16
gatewayType: centralized
natOutgoing: false
externalEgressGateway: 192.168.0.1
policyRoutingTableID: 1000
policyRoutingPriority: 1500

•

•

•

•

7.13 External Gateway

- 214/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.14 VIP reserved IP

VIP Virtual IP addresses are reserved for IP addresses. The reason for the design of VIP is that the IP and POD of kube-ovn are

directly related in naming, so the function of reserving IP can not be realized directly based on IP. At the beginning of the design,

VIP refers to the function of Openstack neutron Allowed-Address-Pairs(AAP), which can be used for Openstack octavia load

balancer projects. It can also be used to provide in-machine application (POD) IP, as seen in the aliyun terway project. In

addition, because neutron has the function of reserving IP, VIP has been extended to a certain extent, so that VIP can be directly

used to reserve IP for POD, but this design will lead to the function of VIP and IP become blurred, which is not an elegant way to

achieve, so it is not recommended to use in production. In addition, since the Switch LB of OVN can provide a function of using

the internal IP address of the subnet as the front-end VIP of the LB, the scenario of using the OVN Switch LB Rule in the subnet

for the VIP is extended. In short, there are only three use cases for VIP design at present:

Allowed-Address-Pairs VIP

Switch LB rule VIP

Pod uses VIP to fix IP

7.14.1 1. Allowed-Address-Pairs VIP

In this scenario, we want to dynamically reserve a part of the IP but not allocate it to Pods but to other infrastructure enables,

such as:

Kubernetes nesting scenarios In which the upper-layer Kubernetes uses the Underlay network, the underlying Subnet

addresses are used.

LB or other network infrastructure needs to use an IP within a Subnet, but does not have a separate Pod.

In addition, VIP can reserve IP for Allowed-Address-Pairs to support the scenario in which a single NIC is configured with

multiple IP addresses, for example:

Keepalived can help with fast failover and flexible load balancing architecture by configuring additional IP address pairs

1.1 Automatically assign addresses to VIP

If you just want to reserve a number of IP addresses without requiring the IP address itself, you can use the following yaml to

create:

subnet : The IP address is reserved from the Subnet.

type : Currently, two types of ip addresses are supported. If the value is empty, it indicates that the ip address is used only for

ipam ip addresses. switch_lb_vip indicates that the IP address is used only for switch lb.

Query the VIP after it is created:

It can be seen that the VIP is assigned an IP address of '10.16.0.12', which can be used by other network infrastructures later.

1.2 Use fixed address VIP

If there is a need for the reserved VIP IP address, the following yaml can be used for fixed allocation:

•

•

•

•

•

•

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: vip-dynamic-01
spec:

subnet: ovn-default
type: ""

•

•

kubectl get vip
NAME V4IP PV4IP MAC PMAC V6IP PV6IP SUBNET READY
vip-dynamic-01 10.16.0.12 00:00:00:F0:DB:25 ovn-default true

7.14 VIP reserved IP

- 215/324 - 2025 Kube-OVN Team

subnet : The IP address is reserved from the Subnet.

v4ip : Fixed assigned IP address, which must be within the CIDR range of 'subnet'.

Query the VIP after it is created:

1.3 Pod Uses VIP to enable AAP

Pod can use annotation to specify VIP to enable AAP function. labels must meet the condition of node selector in VIP.

Pod annotation supports specifying multiple VIPs. The configuration format is: ovn.kubernetes.io/aaps: vip-aap,vip-aap2,vip-aap3

AAP support multi nic, if a Pod is configured with multiple nics, AAP will configure the Port corresponding to the same subnet of

the Pod and VIP.

1.3.1 CREATE VIP SUPPORT AAP

VIP also supports the assignment of fixed and random addresses, as described above.

namespace : In AAP scenarios, a VIP needs to specify a namespace explicitly. Only resources in the same namespace can enable

the AAP function.

selector : In the AAP scenario, the node selector used to select the Pod attached to the VIP has the same format as the

NodeSelector format in Kubernetes.

Query the Port corresponding to the VIP:

Query the configuration of the AAP after the AAP is created:

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: static-vip01
spec:

subnet: ovn-default
v4ip: "10.16.0.121"

•

•

kubectl get vip
NAME V4IP PV4IP MAC PMAC V6IP PV6IP SUBNET READY
static-vip01 10.16.0.121 00:00:00:F0:DB:26 ovn-default true

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: vip-aap
spec:

subnet: ovn-default
namespace: default
selector:

- "app: aap1"

•

•

kubectl ko nbctl show ovn-default
switch e32e1d3b-c539-45f4-ab19-be4e33a061f6 (ovn-default)

port aap-vip
type: virtual

apiVersion: v1
kind: Pod
metadata:

name: busybox
annotations:

ovn.kubernetes.io/aaps: vip-aap
labels:

app: aap1
spec:

containers:
- name: busybox

image: busybox
command: ["sleep", "3600"]
securityContext:

capabilities:
add:

- NET_ADMIN

kubectl ko nbctl list logical_switch_port aap-vip
_uuid : cd930750-0533-4f06-a6c0-217ddac73272
addresses : []

7.14.1 1. Allowed-Address-Pairs VIP

- 216/324 - 2025 Kube-OVN Team

virtual-ip is set to the IP address reserved for the VIP, and virtual-parents is set to the Port of the Pod whose AAP function is

enabled.

Query the configuration of the Pod after the POD is created:

In addition to the IP assigned automatically when the Pod is created, the IP of the VIP is also successfully bound, and other Pods

in the current subnet can communicate with these two IP addresses.

7.14.2 2. Switch LB rule vip

subnet : The IP address is reserved from the Subnet.

type : Currently, two types of ip addresses are supported. If the value is empty, it indicates that the ip address is used only for

ipam ip addresses. switch_lb_vip indicates that the IP address is used only for switch lb.

7.14.3 3. POD Use VIP to reserve IP address

It is not recommended to use this function in production because the distinction between this function and IP function is not

clear.

This feature has been supported since v1.12.

You can use annotations to assign a VIP to a Pod, then the pod will use the vip's ip address:

dhcpv4_options : []
dhcpv6_options : []
dynamic_addresses : []
enabled : []
external_ids : {ls=ovn-default, vendor=kube-ovn}
ha_chassis_group : []
mirror_rules : []
name : aap-vip
options : {virtual-ip="10.16.0.100", virtual-parents="busybox.default"}
parent_name : []
port_security : []
tag : []
tag_request : []
type : virtual
up : false

kubectl exec -it busybox -- ip addr add 10.16.0.100/16 dev eth0
kubectl exec -it busybox01 -- ip addr show eth0
35: eth0@if36: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1400 qdisc noqueue

link/ether 00:00:00:e2:ab:0c brd ff:ff:ff:ff:ff:ff
inet 10.16.0.7/16 brd 10.16.255.255 scope global eth0

valid_lft forever preferred_lft forever
inet 10.16.0.100/16 scope global secondary eth0

valid_lft forever preferred_lft forever
inet6 fe80::200:ff:fee2:ab0c/64 scope link

valid_lft forever preferred_lft forever

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: slr-01
spec:

subnet: ovn-default
type: switch_lb_vip

•

•

apiVersion: kubeovn.io/v1
kind: Vip
metadata:

name: pod-use-vip
spec:

subnet: ovn-default
type: ""

apiVersion: v1
kind: Pod
metadata:

name: static-ip
annotations:

ovn.kubernetes.io/vip: pod-use-vip # use vip name
namespace: default

spec:
containers:

7.14.2 2. Switch LB rule vip

- 217/324 - 2025 Kube-OVN Team

3.1 StatefulSet and Kubevirt VM retain VIP

Due to the particularity of 'StatefulSet' and 'VM', after their Pod is destroyed and pulled up, it will re-use the previously set VIP.

VM retention VIP needs to ensure that 'kube-ovn-controller' 'keep-vm-ip' parameter is' true '. Please refer to Kubevirt VM enable

keep its ip

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

7.14.4 Comments

- name: static-ip
image: docker.io/library/nginx:alpine

+1

7.14.4 Comments

- 218/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/bobz965
https://github.com/bobz965
https://github.com/zcq98
https://github.com/zcq98
https://github.com/mingoooo
https://github.com/mingoooo
https://github.com/ShaPoHun
https://github.com/ShaPoHun
https://github.com/kubeovn/docs/blob/master/docs/advance/vip.en.md

7.15 Offload with Mellanox

Kube-OVN uses OVS for traffic forwarding in the final data plane, and the associated flow table matching, tunnel encapsulation

and other functions are CPU-intensive, which consumes a lot of CPU resources and leads to higher latency and lower throughput

under heavy traffic. Mellanox Accelerated Switching And Packet Processing (ASAP²) technology offloads OVS-related operations

to an eSwitch within the eSwitch in the hardware. This technology can shorten the data path without modifying the OVS control

plane, avoiding the use of host CPU resources, which dramatically reduce latency and significantly increase the throughput.

The solution described in this article was verified in 2022. However, hardware NICs may now have new features, and some

limitations mentioned may have been resolved. Please consult your hardware vendor for the latest technical constraints and

capabilities.

7.15.1 Prerequisites

Mellanox CX5/CX6/BlueField that support ASAP².

CentOS 8 Stream or Linux 5.7 above.

Since the current NIC does not support dp_hash and hash operation offload, OVN LB function should be disabled.

In order to configure offload mode, the network card cannot be bound to a bond.

7.15.2 Configure SR-IOV and Device Plugin

Mellanox network card supports two ways to configure offload, one is to manually configure the network card SR-IOV and Device

Plugin, and the other is to use sriov-network-operator Perform automatic configuration.

Note

•

•

•

•

7.15 Offload with Mellanox

- 219/324 - 2025 Kube-OVN Team

https://github.com/kubeovn/sriov-network-operator

Manually configure SR-IOV and Device Plugin

CONFIGURE SR-IOV

Query the device ID of the network card, in the following example it is 84:00.0 and 84.00.1 :

Find the corresponding NIC by its device ID:

Check whether the network card is bound to bond:

In this example, the network cards enp132s0f0np0 and enp132s0f1np1 are bound to bond1

Remove bond and existing VF:

Steering Mode:

OVS-kernel supports two steering modes for rule insertion into hardware:

SMFS (software-managed flow steering): default mode; rules are inserted directly to the hardware by the software (driver).

This mode is optimized for rule insertion.

DMFS (device-managed flow steering): rule insertion is done using firmware commands. This mode is optimized for

throughput with a small amount of rules in the system.

The steering mode can be configured via sysfs or devlink API in kernels that support it:

Note: If you don't know which mode to choose, you can use the default mode without configuration.

Check the number of available VFs:

Create VFs and do not exceeding the number found above:

lspci -nn | grep ConnectX-5
84:00.0 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5] [15b3:1017]
84:00.1 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5] [15b3:1017]

ls -l /sys/class/net/ | grep 84:00.0
lrwxrwxrwx 1 root root 0 Feb 4 16:16 enp132s0f0np0 -> ../../devices/pci0000:80/0000:80:08.0/0000:84:00.0/net/enp132s0f0np0
ls -l /sys/class/net/ | grep 84:00.1
lrwxrwxrwx 1 root root 0 Feb 4 16:16 enp132s0f1np1 -> ../../devices/pci0000:80/0000:80:08.0/0000:84:00.1/net/enp132s0f1np1

ip link show enp132s0f0np0 | grep bond
160: enp132s0f0np0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond1 state UP mode DEFAULT group default qlen 1000
ip link show enp132s0f1np1 | grep bond
169: enp132s0f1np1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond1 state UP mode DEFAULT group default qlen 1000

ifenslave -d bond1 enp132s0f0np0
ifenslave -d bond1 enp132s0f1np1
echo 0 > /sys/class/net/enp132s0f0np0/device/sriov_numvfs
echo 0 > /sys/class/net/enp132s0f1np1/device/sriov_numvfs
ip link set enp132s0f0np0 down
ip link set enp132s0f1np1 down

•

•

Configure via sysfs
echo <smfs|dmfs> > /sys/class/net/enp132s0f0np0/compat/devlink/steering_mode
echo <smfs|dmfs> > /sys/class/net/enp132s0f1np1/compat/devlink/steering_mode
Configure via devlink
devlink dev param set pci/84:00.0 name flow_steering_mode value smfs cmode runtime
devlink dev param set pci/84:00.1 name flow_steering_mode value smfs cmode runtime

cat /sys/class/net/enp132s0f0np0/device/sriov_totalvfs
127
cat /sys/class/net/enp132s1f0np1/device/sriov_totalvfs
127

echo '4' > /sys/class/net/enp132s0f0np0/device/sriov_numvfs
echo '4' > /sys/class/net/enp132s1f0np1/device/sriov_numvfs
ip link show enp132s0f0np0
160: enp132s0f0np0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN mode DEFAULT group default qlen 1000

link/ether 08:c0:eb:74:c3:4a brd ff:ff:ff:ff:ff:ff
vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 1 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 2 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 3 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off

ip link show enp132s0f1np1

7.15.2 Configure SR-IOV and Device Plugin

- 220/324 - 2025 Kube-OVN Team

Find the device IDs corresponding to the above VFs:

Unbound the VFs from the driver:

Enable eSwitch mode and set up hardware offload:

SR-IOV VF LAG:

SR-IOV VF LAG allows the NIC's physical functions (PFs) to get the rules that the OVS tries to offload to the bond net-device, and

to offload them to the hardware e-switch.The supported bond modes are as follows:

Active-backup

XOR

LACP

SR-IOV VF LAG enables complete offload of the LAG functionality to the hardware. The bonding creates a single bonded PF port.

Packets from the up-link can arrive from any of the physical ports and are forwarded to the bond device.When hardware offload

is used, packets from both ports can be forwarded to any of the VFs. Traffic from the VF can be forwarded to both ports

according to the bonding state. This means that when in active-backup mode, only one PF is up, and traffic from any VF goes

through this PF. When in XOR or LACP mode, if both PFs are up, traffic from any VF is split between these two PFs.

In this example, LACP mode will be used, and the configuration is as follows:

Note: If you do not need to bind bond, please ignore the above operation.

Rebind the driver and complete the VF setup:

169: enp132s0f1np1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN mode DEFAULT group default qlen 1000
link/ether 08:c0:eb:74:c3:4b brd ff:ff:ff:ff:ff:ff
vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 1 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 2 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off
vf 3 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable, trust off, query_rss off

ip link set enp132s0f0np0 up
ip link set enp132s0f1np1 up

lspci -nn | grep ConnectX-5 | grep Virtual
84:00.2 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:00.3 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:00.4 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:00.5 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:00.6 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:00.7 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:01.0 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
84:01.1 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]

echo 0000:84:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:00.4 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:00.5 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:00.6 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:00.7 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:01.0 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:84:01.1 > /sys/bus/pci/drivers/mlx5_core/unbind

devlink dev eswitch set pci/0000:84:00.0 mode switchdev
devlink dev eswitch set pci/0000:84:00.1 mode switchdev
ethtool -K enp132s0f0np0 hw-tc-offload on
ethtool -K enp132s0f1np1 hw-tc-offload on

•

•

•

modprobe bonding mode=802.3ad
ip link set enp132s0f0np0 master bond1
ip link set enp132s0f1np1 master bond1
ip link set enp132s0f0np0 up
ip link set enp132s0f1np1 up
ip link set bond1 up

echo 0000:84:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:00.3 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:00.4 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:00.5 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:00.6 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:00.7 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:01.0 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:84:01.1 > /sys/bus/pci/drivers/mlx5_core/bind

7.15.2 Configure SR-IOV and Device Plugin

- 221/324 - 2025 Kube-OVN Team

Some behaviors of NetworkManager may cause driver exceptions, if offloading problems occur we recommended to close

NetworkManager and try again.

CONFIGURE DEVICE PLUGIN

Since each machine has a limited number of VFs and each Pod that uses acceleration will take up VF resources, we need to use

the SR-IOV Device Plugin to manage the corresponding resources so that the scheduler knows how to schedule.

Create SR-IOV Configmap:

This plugin creates device plugin endpoints based on the configurations given in the config map associated with the SR-IOV

Network Device Plugin.

selectors : VF selectors

vendors : Target device's vendor Hex code as string

devices : Target Devices' device Hex code as string

drivers : Target device driver names as string

selectors also supports VF selection based on pciAddresses , acpiIndexes and other parameters. For more detailed configuration,

please refer to SR-IOV ConfigMap configuration

Please read the SR-IOV device plugin to deploy:

Check if SR-IOV resources have been registered to Kubernetes Node:

Configure SR-IOV and Device Plugin using sriov-network-operator

Install node-feature-discovery to automatically detect hardware functions and system configuration:

Or use the following command to manually add annotation to the network card with offload capability:

Clone the code repository and install the Operator:

systemctl stop NetworkManager
systemctl disable NetworkManager

apiVersion: v1
kind: ConfigMap
metadata:

name: sriovdp-config
namespace: kube-system

data:
config.json: |

{
"resourceList": [{

"resourcePrefix": "mellanox.com",
"resourceName": "cx5_sriov_switchdev",
"selectors": {

"vendors": ["15b3"],
"devices": ["1018"],
"drivers": ["mlx5_core"]

}
}
]

}

•

•

•

•

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/sriov-network-device-plugin/v3.6.2/deployments/sriovdp-daemonset.yaml

kubectl describe node kube-ovn-01 | grep mellanox

mellanox.com/cx5_sriov_switchdev: 8
mellanox.com/cx5_sriov_switchdev: 8
mellanox.com/cx5_sriov_switchdev 0 0

kubectl apply -k https://github.com/kubernetes-sigs/node-feature-discovery/deployment/overlays/default?ref=v0.11.3

kubectl label nodes [offloadNicNode] feature.node.kubernetes.io/network-sriov.capable=true

git clone --depth=1 https://github.com/kubeovn/sriov-network-operator.git
kubectl apply -k sriov-network-operator/deploy

7.15.2 Configure SR-IOV and Device Plugin

- 222/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin/tree/v3.6.2?tab=readme-ov-file#configurations
https://github.com/intel/sriov-network-device-plugin
https://github.com/kubernetes-sigs/node-feature-discovery

Check if the Operator component is working properly:

Check SriovNetworkNodeState , taking the node1 node as an example, there are two Mellanox network cards on this node:

Create the SriovNetworkNodePolicy resource and select the network card to be managed through nicSelector :

Check the status field of SriovNetworkNodeState again:

kubectl get -n kube-system all | grep sriov
NAME READY STATUS RESTARTS AGE
pod/sriov-network-config-daemon-bf9nt 1/1 Running 0 8s
pod/sriov-network-operator-54d7545f65-296gb 1/1 Running 0 10s

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
daemonset.apps/sriov-network-config-daemon 1 1 1 1 1 beta.kubernetes.io/os=linux,feature.node.kubernetes.io/
network-sriov.capable=true 8s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/sriov-network-operator 1/1 1 1 10s

NAME DESIRED CURRENT READY AGE
replicaset.apps/sriov-network-operator-54d7545f65 1 1 1 10s

kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -n kube-system node1 -o yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
spec: ...
status:

interfaces:
- deviceID: "1017"

driver: mlx5_core
mtu: 1500
pciAddress: "0000:5f:00.0"
totalvfs: 8
vendor: "15b3"
linkSeed: 25000Mb/s
linkType: ETH
mac: 08:c0:eb:f4:85:bb
name: ens41f0np0

- deviceID: "1017"
driver: mlx5_core
mtu: 1500
pciAddress: "0000:5f:00.1"
totalvfs: 8
vendor: "15b3"
linkSeed: 25000Mb/s
linkType: ETH
mac: 08:c0:eb:f4:85:bb
name: ens41f1np1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:

name: policy
namespace: kube-system

spec:
nodeSelector:

feature.node.kubernetes.io/network-sriov.capable: "true"
eSwitchMode: switchdev
numVfs: 3
nicSelector:

pfNames:
- ens41f0np0
- ens41f1np1

resourceName: cx_sriov_switchdev

kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -n kube-system node1 -o yaml

...
spec:

interfaces:
- eSwitchMode: switchdev

name: ens41f0np0
numVfs: 3
pciAddress: 0000:5f:00.0
vfGroups:
- policyName: policy

vfRange: 0-2
resourceName: cx_sriov_switchdev

- eSwitchMode: switchdev
name: ens41f1np1
numVfs: 3
pciAddress: 0000:5f:00.1
vfGroups:
- policyName: policy

vfRange: 0-2

7.15.2 Configure SR-IOV and Device Plugin

- 223/324 - 2025 Kube-OVN Team

Check the status of VF:

Check PF working mode:

7.15.3 Install Multus-CNI

The device IDs obtained during SR-IOV Device Plugin scheduling need to be passed to Kube-OVN via Multus-CNI, so Multus-CNI

needs to be configured to perform the related tasks.

Please read Multus-CNI Document to deploy:

Note: multus provides Thin and Thick versions of the plug-in. To support SR-IOV, you need to install the Thick version.

Create NetworkAttachmentDefinition :

resourceName: cx_sriov_switchdev
status:

interfaces
- Vfs:

- deviceID: 1018
driver: mlx5_core
pciAddress: 0000:5f:00.2
vendor: "15b3"

- deviceID: 1018
driver: mlx5_core
pciAddress: 0000:5f:00.3
vendor: "15b3"

- deviceID: 1018
driver: mlx5_core
pciAddress: 0000:5f:00.4
vendor: "15b3"

deviceID: "1017"
driver: mlx5_core
linkSeed: 25000Mb/s
linkType: ETH
mac: 08:c0:eb:f4:85:ab
mtu: 1500
name: ens41f0np0
numVfs: 3
pciAddress: 0000:5f:00.0
totalvfs: 3
vendor: "15b3"

- Vfs:
- deviceID: 1018

driver: mlx5_core
pciAddress: 0000:5f:00.5
vendor: "15b3"

- deviceID: 1018
driver: mlx5_core
pciAddress: 0000:5f:00.6
vendor: "15b3"

- deviceID: 1018
driver: mlx5_core
pciAddress: 0000:5f:00.7
vendor: "15b3"

deviceID: "1017"
driver: mlx5_core
linkSeed: 25000Mb/s
linkType: ETH
mac: 08:c0:eb:f4:85:bb
mtu: 1500
name: ens41f1np1
numVfs: 3
pciAddress: 0000:5f:00.1
totalvfs: 3
vendor: "15b3"

lspci -nn | grep ConnectX
5f:00.0 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5] [15b3:1017]
5f:00.1 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5] [15b3:1017]
5f:00.2 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
5f:00.3 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
5f:00.4 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
5f:00.5 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
5f:00.6 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]
5f:00.7 Ethernet controller [0200]: Mellanox Technologies MT27800 Family [ConnectX-5 Virtual Function] [15b3:1018]

cat /sys/class/net/ens41f0np0/compat/devlink/mode
switchdev

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/multus-cni/v4.0.2/deployments/multus-daemonset-thick.yml

7.15.3 Install Multus-CNI

- 224/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni

provider : the format should be {name}.{namespace}.ovn of related NetworkAttachmentDefinition .

7.15.4 Overlay offload

Enable Offload in Kube-OVN

Download the scripts:

Change the related options, IFACE should be the physic NIC and has an IP:

Install Kube-OVN:

Create Pods with VF NICs

Pods that use VF for network offload acceleration can be created using the following yaml:

v1.multus-cni.io/default-network : is the {namespace}/{name} of NetworkAttachmentDefinition in the previous step.

sriov.default.ovn.kubernetes.io/logical_switch : Specify the Subnet to which the Pod belongs. If you want the subnet to which

the Pod belongs to be the default subnet, this line annotation can be omitted.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: sriov
namespace: default
annotations:

k8s.v1.cni.cncf.io/resourceName: mellanox.com/cx5_sriov_switchdev
spec:

config: '{
"cniVersion": "0.3.1",
"name": "kube-ovn",
"plugins":[

{
"type":"kube-ovn",
"server_socket":"/run/openvswitch/kube-ovn-daemon.sock",
"provider": "sriov.default.ovn"

},
{

"type":"portmap",
"capabilities":{

"portMappings":true
}

}
]

}'

•

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install.sh

ENABLE_MIRROR=${ENABLE_MIRROR:-false}
HW_OFFLOAD=${HW_OFFLOAD:-true}
ENABLE_LB=${ENABLE_LB:-false}
IFACE="bond1"
Take manual configuration of the network card in SR-IOV and Device Plugin as an example. If bond is bound, set IFACE to bond1. If bond is not bound, set
IFACE to enp132s0f0np0 or enp132s0f1np1.

bash install.sh

apiVersion: v1
kind: Pod
metadata:

name: nginx-overlay
annotations:

v1.multus-cni.io/default-network: default/sriov
sriov.default.ovn.kubernetes.io/logical_switch: ovn-default

spec:
containers:
- name: nginx-overlay

image: docker.io/library/nginx:alpine
resources:

requests:
mellanox.com/cx5_sriov_switchdev: '1'

limits:
mellanox.com/cx5_sriov_switchdev: '1'

•

•

7.15.4 Overlay offload

- 225/324 - 2025 Kube-OVN Team

7.15.5 Underlay offload

Enable Offload in Kube-OVN

Download the scripts:

Change the related options, IFACE should be the physic NIC and has an IP:

Install Kube-OVN:

Create Pods with VF NICs

Pods that use VF for network offload acceleration can be created using the following yaml:

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install.sh

ENABLE_MIRROR=${ENABLE_MIRROR:-false}
HW_OFFLOAD=${HW_OFFLOAD:-true}
ENABLE_LB=${ENABLE_LB:-false}
IFACE=""
If Underlay uninstallation is required, IFACE needs to be set to other non-PF network cards. (When IFACE is empty, the K8s cluster communication network
card will be used by default. Note that this network card cannot be a PF network card)

bash install.sh

apiVersion: kubeovn.io/v1
kind: ProviderNetwork
metadata:

name: underlay-offload
spec:

defaultInterface: bond1

apiVersion: kubeovn.io/v1
kind: Vlan
metadata:

name: vlan0
spec:

id: 0
provider: underlay-offload

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: vlan0
spec:

protocol: IPv4
provider: ovn
cidrBlock: 10.10.204.0/24
gateway: 10.10.204.254
vlan: vlan0
excludeIps:
- 10.10.204.1..10.10.204.100

apiVersion: v1
kind: Pod
metadata:

name: nginx-underlay
annotations:

k8s.v1.cni.cncf.io/networks: '[{
"name": "sriov",
"namespace": "default",
"default-route": ["10.10.204.254"]

}]'
sriov.default.ovn.kubernetes.io/logical_switch: vlan0

spec:
containers:
- name: nginx-underlay

image: docker.io/library/nginx:alpine
resources:

requests:
mellanox.com/cx5_sriov_switchdev: '1'

7.15.5 Underlay offload

- 226/324 - 2025 Kube-OVN Team

v1.multus-cni.io/default-network : is the {namespace}/{name} of NetworkAttachmentDefinition in the previous step.

Note: In the above example, multus is used to create a Pod using VF as the secondary network card, and VF is used as the

default route of the Pod. You can also use VF as the main network card of the Pod. For more details on multus configuration, see

Multiple Network Card Management.

The above example will create a Pod that does not use VF for network offload acceleration, and its flow table will still be

delivered to ovs-kernel but not to e-switch.

7.15.6 offload verification

Running the following command in the ovs-ovn container of the Pod run node to observe if offload success.

If there is offloaded:yes, dp:tc content, the offloading is successful.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

7.15.7 Comments

limits:
mellanox.com/cx5_sriov_switchdev: '1'

•

apiVersion: v1
kind: Pod
metadata:

name: nginx-underlay-noVF
annotations:

ovn.kubernetes.io/logical_switch: vlan0
spec:

containers:
- name: nginx-underlay-noVF

image: docker.io/library/nginx:alpine

ovs-appctl dpctl/dump-flows -m type=offloaded
ufid:91cc45de-e7e9-4935-8f82-1890430b0f66, skb_priority(0/0),skb_mark(0/0),ct_state(0/0x23),ct_zone(0/0),ct_mark(0/0),ct_label(0/0x1),recirc_id(0),dp_hash(0/
0),in_port(5b45c61b307e_h),packet_type(ns=0/0,id=0/0),eth(src=00:00:00:c5:6d:4e,dst=00:00:00:e7:16:ce),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=0.
0.0.0/0.0.0.0,proto=0/0,tos=0/0,ttl=0/0,frag=no), packets:941539, bytes:62142230, used:0.260s, offloaded:yes, dp:tc, actions:54235e5753b8_h
ufid:e00768d7-e652-4d79-8182-3291d852b791, skb_priority(0/0),skb_mark(0/0),ct_state(0/0x23),ct_zone(0/0),ct_mark(0/0),ct_label(0/0x1),recirc_id(0),dp_hash(0/
0),in_port(54235e5753b8_h),packet_type(ns=0/0,id=0/0),eth(src=00:00:00:e7:16:ce,dst=00:00:00:c5:6d:4e),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=0.
0.0.0/0.0.0.0,proto=0/0,tos=0/0,ttl=0/0,frag=no), packets:82386659, bytes:115944854173, used:0.260s, offloaded:yes, dp:tc, actions:5b45c61b307e_h

7.15.6 offload verification

- 227/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.16 Offload with Corigine

Kube-OVN uses OVS for traffic forwarding in the final data plane, and the associated flow table matching, tunnel encapsulation

and other functions are CPU-intensive, which consumes a lot of CPU resources and leads to higher latency and lower throughput

under heavy traffic. Corigine Agilio CX series SmartNIC can offload OVS-related operations to the hardware. This technology can

shorten the data path without modifying the OVS control plane, avoiding the use of host CPU resources, which dramatically

reduce latency and significantly increase the throughput.

The solution described in this article was verified in 2022. However, hardware NICs may now have new features, and some

limitations mentioned may have been resolved. Please consult your hardware vendor for the latest technical constraints and

capabilities.

7.16.1 Prerequisites

Corigine Agilio CX series SmartNIC.

CentOS 8 Stream or Linux 5.7 above.

Since the current NIC does not support dp_hash and hash operation offload, OVN LB function should be disabled.

7.16.2 Setup SR-IOV

Please read Agilio Open vSwitch TC User Guide for the detail usage of this SmartNIC.

The following scripts are saved for subsequent execution of firmware-related operations:

Note

•

•

•

#!/bin/bash
DEVICE=${1}
DEFAULT_ASSY=scan
ASSY=${2:-${DEFAULT_ASSY}}
APP=${3:-flower}

7.16 Offload with Corigine

- 228/324 - 2025 Kube-OVN Team

https://help.netronome.com/support/solutions/articles/36000081172-agilio-open-vswitch-tc-user-guide

Switching firmware options and reloading the driver:

Check the number of available VFs and create VFs.

7.16.3 Install SR-IOV Device Plugin

Since each machine has a limited number of VFs and each Pod that uses acceleration will take up VF resources, we need to use

the SR-IOV Device Plugin to manage the corresponding resources so that the scheduler knows how to schedule.

Create SR-IOV Configmap:

Please read the SR-IOV device plugin to deploy:

if ["x${DEVICE}" = "x" -o ! -e /sys/class/net/${DEVICE}]; then
echo Syntax: ${0} device [ASSY] [APP]
echo
echo This script associates the TC Offload firmware
echo with a Netronome SmartNIC.
echo
echo device: is the network device associated with the SmartNIC
echo ASSY: defaults to ${DEFAULT_ASSY}
echo APP: defaults to flower. flower-next is supported if updated
echo firmware has been installed.
exit 1

fi

It is recommended that the assembly be determined by inspection
The following code determines the value via the debug interface
if ["${ASSY}x" = "scanx"]; then

ethtool -W ${DEVICE} 0
DEBUG=$(ethtool -w ${DEVICE} data /dev/stdout | strings)
SERIAL=$(echo "${DEBUG}" | grep "^SN:")
ASSY=$(echo ${SERIAL} | grep -oE AMDA[0-9]{4})

fi

PCIADDR=$(basename $(readlink -e /sys/class/net/${DEVICE}/device))
FWDIR="/lib/firmware/netronome"

AMDA0081 and AMDA0097 uses the same firmware
if ["${ASSY}" = "AMDA0081"]; then

if [! -e ${FWDIR}/${APP}/nic_AMDA0081.nffw]; then
ln -sf nic_AMDA0097.nffw ${FWDIR}/${APP}/nic_AMDA0081.nffw

fi
fi

FW="${FWDIR}/pci-${PCIADDR}.nffw"
ln -sf "${APP}/nic_${ASSY}.nffw" "${FW}"

insert distro-specific initramfs section here...

./agilio-tc-fw-select.sh ens47np0 scan
rmmod nfp
modprobe nfp

cat /sys/class/net/ens3/device/sriov_totalvfs
65

echo 4 > /sys/class/net/ens47/device/sriov_numvfs

apiVersion: v1
kind: ConfigMap
metadata:

name: sriovdp-config
namespace: kube-system

data:
config.json: |

{
"resourceList": [{

"resourcePrefix": "corigine.com",
"resourceName": "agilio_sriov",
"selectors": {

"vendors": ["19ee"],
"devices": ["6003"],
"drivers": ["nfp_netvf"]

}
}
]

}

kubectl apply -f https://raw.githubusercontent.com/intel/sriov-network-device-plugin/master/deployments/k8s-v1.16/sriovdp-daemonset.yaml

7.16.3 Install SR-IOV Device Plugin

- 229/324 - 2025 Kube-OVN Team

https://github.com/intel/sriov-network-device-plugin

Check if SR-IOV resources have been registered to Kubernetes Node:

7.16.4 Install Multus-CNI

The device IDs obtained during SR-IOV Device Plugin scheduling need to be passed to Kube-OVN via Multus-CNI, so Multus-CNI

needs to be configured to perform the related tasks.

Please read Multus-CNI Document to deploy:

Create NetworkAttachmentDefinition :

provider : the format should be {name}.{namespace}.ovn of related NetworkAttachmentDefinition .

7.16.5 Enable Offload in Kube-OVN

Download the scripts:

Change the related options, IFACE should be the physic NIC and has an IP:

Install Kube-OVN:

7.16.6 Create Pods with VF NICs

Pods that use VF for network offload acceleration can be created using the following yaml:

kubectl describe no containerserver | grep corigine

corigine.com/agilio_sriov: 4
corigine.com/agilio_sriov: 4
corigine.com/agilio_sriov 0 0

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/multus-cni/master/deployments/multus-daemonset.yml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: default
namespace: default
annotations:

k8s.v1.cni.cncf.io/resourceName: corigine.com/agilio_sriov
spec:

config: '{
"cniVersion": "0.3.1",
"name": "kube-ovn",
"plugins":[

{
"type":"kube-ovn",
"server_socket":"/run/openvswitch/kube-ovn-daemon.sock",
"provider": "default.default.ovn"

},
{

"type":"portmap",
"capabilities":{

"portMappings":true
}

}
]

}'

•

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install.sh

ENABLE_MIRROR=${ENABLE_MIRROR:-false}
HW_OFFLOAD=${HW_OFFLOAD:-true}
ENABLE_LB=${ENABLE_LB:-false}
IFACE="ensp01"

bash install.sh

apiVersion: v1
kind: Pod
metadata:

name: nginx
namespace: default

7.16.4 Install Multus-CNI

- 230/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni

v1.multus-cni.io/default-network : should be the {namespace}/{name} of related NetworkAttachmentDefinition .

Running the following command in the ovs-ovn container of the Pod run node to observe if offload success.

If there is offloaded:yes, dp:tc content, the offloading is successful.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

7.16.7 Comments

annotations:
v1.multus-cni.io/default-network: default/default

spec:
containers:

- name: nginx
image: docker.io/library/nginx:alpine
resources:

requests:
corigine.com/agilio_sriov: '1'

limits:
corigine.com/agilio_sriov: '1'

•

ovs-appctl dpctl/dump-flows -m type=offloaded
ufid:91cc45de-e7e9-4935-8f82-1890430b0f66, skb_priority(0/0),skb_mark(0/0),ct_state(0/0x23),ct_zone(0/0),ct_mark(0/0),ct_label(0/0x1),recirc_id(0),dp_hash(0/
0),in_port(5b45c61b307e_h),packet_type(ns=0/0,id=0/0),eth(src=00:00:00:c5:6d:4e,dst=00:00:00:e7:16:ce),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=0.
0.0.0/0.0.0.0,proto=0/0,tos=0/0,ttl=0/0,frag=no), packets:941539, bytes:62142230, used:0.260s, offloaded:yes, dp:tc, actions:54235e5753b8_h
ufid:e00768d7-e652-4d79-8182-3291d852b791, skb_priority(0/0),skb_mark(0/0),ct_state(0/0x23),ct_zone(0/0),ct_mark(0/0),ct_label(0/0x1),recirc_id(0),dp_hash(0/
0),in_port(54235e5753b8_h),packet_type(ns=0/0,id=0/0),eth(src=00:00:00:e7:16:ce,dst=00:00:00:c5:6d:4e),eth_type(0x0800),ipv4(src=0.0.0.0/0.0.0.0,dst=0.
0.0.0/0.0.0.0,proto=0/0,tos=0/0,ttl=0/0,frag=no), packets:82386659, bytes:115944854173, used:0.260s, offloaded:yes, dp:tc, actions:5b45c61b307e_h

7.16.7 Comments

- 231/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.17 Hardware Offload for Yunsilicon

The OVS software based solution is CPU intensive, affecting system performance and preventing full utilization of the available

bandwidth.

Yunsilicon metaScale SmartNICs provide a drop-in accelerator for OVS which can support very high flow and policy capacities

without degradation in performance. By taking use of SR-IOV technology we can achieve low network latency and high

throughput.

The solution described in this article was verified in 2024. However, hardware NICs may now have new features, and some

limitations mentioned may have been resolved. Please consult your hardware vendor for the latest technical constraints and

capabilities.

Currently, Yunsilicon only supports the v1.11 series version of Kube-OVN, and some of the latest features cannot be used.

7.17.1 Prerequisites

MCR Allinone Packages

Yunsilicon metaScale family NICs

Enable SR-IOV and VT-d in BIOS

7.17.2 Installation Guide

Install Kube-OVN with hw-offload mode enabled

Download the install script:

Configure node

Edit the configuration file named ovs-dpdk-config on the node that needs to run ovs-dpdk. The configuration file needs to be

placed in the /opt/ovs-config directory.

Install Kube-OVN

NOTICE : We need to manually modify the openvswitch image in the script, please contact the technical support of yunsilicon to

obtain the supporting version.

Note

1.

2.

•

•

•

1.

wget https://github.com/yunsilicon/kube-ovn/blob/release-1.11/dist/images/install.sh

1.

specify log level for ovs dpdk, the value is info or dbg, default is info
VLOG=info
specify nic offload, the value is true or false, default is true
HW_OFFLOAD=true
specify cpu mask for ovs dpdk, not specified by default
CPU_MASK=0x02
specify socket memory, not specified by default
SOCKET_MEM="2048,2048"
specify encap IP
ENCAP_IP=6.6.6.208/24
specify pci device
DPDK_DEV=0000:b3:00.0
specify mtu, default is 1500
PF_MTU=1500
specify bond name if bond enabled, not specified by default
BR_PHY_BOND_NAME=bond0

1.

bash install.sh

7.17 Hardware Offload for Yunsilicon

- 232/324 - 2025 Kube-OVN Team

Setting Up SR-IOV

Find the device id of metaScale device, below is b3:00.0

Find the related interface with device id, below is p3p1

Check available VF number

Create VFs

Find the device ids of VFs created above

Enable switchdev mode by device id of PF

Disable NetworkManager if it's running

Install SR-IOV Device Plugin

Create a ConfigMap that defines SR-IOV resource pool configuration

Follow SR-IOV Device Plugin to deploy device plugin.

Check if SR-IOV devices have been discovered by device plugin

1.

[root@k8s-master ~]# lspci -d 1f67:
b3:00.0 Ethernet controller: Device 1f67:1111 (rev 02)
b3:00.1 Ethernet controller: Device 1f67:1111 (rev 02)

1.

ls -l /sys/class/net/ | grep b3:00.0
lrwxrwxrwx 1 root root 0 May 7 16:30 p3p1 -> ../../devices/pci0000:b2/0000:b2:00.0/0000:b3:00.0/net/p3p1

1.

cat /sys/class/net/p3p1/device/sriov_totalvfs
512

1.

echo '10' > /sys/class/net/p3p1/device/sriov_numvfs

1.

lspci -d 1f67:
b3:00.0 Ethernet controller: Device 1f67:1111 (rev 02)
b3:00.1 Ethernet controller: Device 1f67:1111 (rev 02)
b3:00.2 Ethernet controller: Device 1f67:1112
b3:00.3 Ethernet controller: Device 1f67:1112
b3:00.4 Ethernet controller: Device 1f67:1112
b3:00.5 Ethernet controller: Device 1f67:1112
b3:00.6 Ethernet controller: Device 1f67:1112
b3:00.7 Ethernet controller: Device 1f67:1112
b3:01.0 Ethernet controller: Device 1f67:1112
b3:01.1 Ethernet controller: Device 1f67:1112
b3:01.2 Ethernet controller: Device 1f67:1112
b3:01.3 Ethernet controller: Device 1f67:1112

1.

devlink dev eswitch set pci/0000:b3:00.0 mode switchdev

1.

systemctl stop NetworkManager
systemctl disable NetworkManager

1.

apiVersion: v1
kind: ConfigMap
metadata:

name: sriovdp-config
namespace: kube-system

data:
config.json: |

{
"resourceList": [{

"resourceName": "xsc_sriov",
"resourcePrefix": "yunsilicon.com",
"selectors": {

"vendors": ["1f67"],
"devices": ["1012", "1112"]

}}
]

}

1.

2.

7.17.2 Installation Guide

- 233/324 - 2025 Kube-OVN Team

https://github.com/yunsilicon/sriov-network-device-plugin

Install Multus-CNI

Follow Multus-CNI to deploy Multus-CNI

Create a NetworkAttachmentDefinition

Create Pod with SR-IOV

Verify If Offload Works

You can find some flows if all works well.

 PDF Slack Support

kubectl describe node <node name> | grep yunsilicon.com/xsc_sriov
yunsilicon.com/xsc_sriov: 10
yunsilicon.com/xsc_sriov: 10
yunsilicon.com/xsc_sriov 0 0

1.

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/multus-cni/master/deployments/multus-daemonset.yml

1.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: sriov-net1
namespace: default
annotations:

k8s.v1.cni.cncf.io/resourceName: yunsilicon.com/xsc_sriov
spec:

config: '{
"cniVersion": "0.3.1",
"name": "kube-ovn",
"plugins":[

{
"type":"kube-ovn",
"server_socket":"/run/openvswitch/kube-ovn-daemon.sock",
"provider": "sriov-net1.default.ovn"

},
{

"type":"portmap",
"capabilities":{

"portMappings":true
}

}
]

}'

apiVersion: v1
kind: Pod
metadata:

name: nginx
annotations:

v1.multus-cni.io/default-network: default/sriov-net1
spec:

containers:
- name: nginx

image: nginx:alpine
resources:

requests:
yunsilicon.com/xsc_sriov: '1'

limits:
yunsilicon.com/xsc_sriov: '1'

ovs-appctl dpctl/dump-flows type=offloaded
flow-dump from pmd on cpu core: 9
ct_state(-new+est-rel+rpl+trk),ct_mark(0/0x3),recirc_id(0x2d277),in_port(15),packet_type(ns=0,id=0),eth(src=00:00:00:9d:fb:1a,dst=00:
00:00:ce:cf:b9),eth_type(0x0800),ipv4(dst=10.16.0.14,frag=no), packets:6, bytes:588, used:7.276s, actions:ct(zone=4,nat),recirc(0x2d278)
ct_state(-new+est-rel-rpl+trk),ct_mark(0/0x3),recirc_id(0x2d275),in_port(8),packet_type(ns=0,id=0),eth(src=00:00:00:ce:cf:b9,dst=00:00:00:9d:fb:
1a),eth_type(0x0800),ipv4(dst=10.16.0.18,frag=no), packets:5, bytes:490, used:7.434s, actions:ct(zone=6,nat),recirc(0x2d276)
ct_state(-new+est-rel-rpl+trk),ct_mark(0/0x1),recirc_id(0x2d276),in_port(8),packet_type(ns=0,id=0),eth(src=00:00:00:ce:cf:b9,dst=00:00:00:9d:fb:1a/
01:00:00:00:00:00),eth_type(0x0800),ipv4(frag=no), packets:5, bytes:490, used:7.434s, actions:15
recirc_id(0),in_port(15),packet_type(ns=0,id=0),eth(src=00:00:00:9d:fb:1a/01:00:00:00:00:00,dst=00:00:00:ce:cf:b9),eth_type(0x0800),ipv4(dst=10.
16.0.14/255.192.0.0,frag=no), packets:6, bytes:588, used:7.277s, actions:ct(zone=6,nat),recirc(0x2d277)
recirc_id(0),in_port(8),packet_type(ns=0,id=0),eth(src=00:00:00:ce:cf:b9/01:00:00:00:00:00,dst=00:00:00:9d:fb:1a),eth_type(0x0800),ipv4(dst=10.
16.0.18/255.192.0.0,frag=no), packets:6, bytes:588, used:7.434s, actions:ct(zone=4,nat),recirc(0x2d275)
ct_state(-new+est-rel+rpl+trk),ct_mark(0/0x1),recirc_id(0x2d278),in_port(15),packet_type(ns=0,id=0),eth(dst=00:
00:00:ce:cf:b9/01:00:00:00:00:00),eth_type(0x0800),ipv4(frag=no), packets:6, bytes:588, used:7.277s, actions:8

7.17.2 Installation Guide

- 234/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 21, 2025

May 29, 2024

GitHub

7.17.3 Comments

7.17.3 Comments

- 235/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow

7.18 Offload with YUSUR

Kube-OVN uses OVS for traffic forwarding in the final data plane, and the associated flow table matching, tunnel encapsulation

and other functions are CPU-intensive, which consumes a lot of CPU resources and leads to higher latency and lower throughput

under heavy traffic.YUSUR CONFLUX-22OOE series SmartNIC can offload OVS-related operations to the hardware. This

technology can shorten the data path without modifying the OVS control plane, avoiding the use of host CPU resources, which

dramatically reduce latency and significantly increase the throughput.

The solution described in this article was verified in 2024. However, hardware NICs may now have new features, and some

limitations mentioned may have been resolved. Please consult your hardware vendor for the latest technical constraints and

capabilities.

7.18.1 Prerequisites

YUSUR CONFLUX-22OOE series SmartNIC.

ensure hados(Heterogeneous Agile Developing & Operating System) installed.

Enable SR-IOV in BIOS.

7.18.2 Installation Guide

Setting Up SR-IOV

Based on the vendor ID (1f47) of the YUSUR CONFLUX-22OOE series SmartNIC, identify the device IDs of the network card on the

host, such as (00:0a.0) and (00:0b.0), which correspond to the two physical ports on the 2200E. You can select one according to the

fiber connection status.

Check available VF number:

Create VFs and do not exceeding the number found above:

Find the device IDs corresponding to the above VFs:

Configure and install SR-IOV Device Plugin

Create an SR-IOV related ConfigMap to facilitate the SR-IOV Device Plugin installation, enabling it to locate VF resources on nodes

based on this configuration and provide them for Pod usage:

Note

•

•

•

1.

lspci | grep 1f47
00:0a.0 Ethernet controller: Device 1f47:1001 (rev 10)
00:0b.0 Ethernet controller: Device 1f47:1001 (rev 10)

1.

cat /sys/bus/pci/devices/0000\:00\:0a.0/sriov_totalvfs
256

1.

echo 7 > /sys/bus/pci/devices/0000\:00\:0a.0/sriov_numvfs

1.

lspci | grep 1f47
00:0a.0 Ethernet controller: Device 1f47:1001 (rev 10)
00:0a.1 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.2 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.3 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.4 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.5 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.6 Ethernet controller: Device 1f47:110f (rev 10)
00:0a.7 Ethernet controller: Device 1f47:110f (rev 10)
00:0b.0 Ethernet controller: Device 1f47:1001 (rev 10)

1.

7.18 Offload with YUSUR

- 236/324 - 2025 Kube-OVN Team

Install and run the SR-IOV Device Plugin.

Check if SR-IOV resources have been registered to Kubernetes Node:

7.18.3 Install Multus-CNI

The device IDs obtained during SR-IOV Device Plugin scheduling need to be passed to Kube-OVN via Multus-CNI, so Multus-CNI

needs to be configured to perform the related tasks.

Create NetworkAttachmentDefinition :

provider : the format should be {name}.{namespace}.ovn of related NetworkAttachmentDefinition.

7.18.4 Enable Offload in Kube-OVN

Download the scripts:

Change the related options, IFACE should be the physic NIC and has an IP:

apiVersion: v1
kind: ConfigMap
metadata:

name: sriovdp-config
namespace: kube-system

data:
config.json: |

{
"resourceList": [{

"resourceName": "sriov_dpu",
"resourcePrefix": "yusur.tech",
"selectors": {

"vendors": ["1f47"],
"devices": ["110f"]

}}
]

}

1.

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/sriov-network-device-plugin/v3.6.2/deployments/sriovdp-daemonset.yaml

1.

kubectl describe node node1 | grep yusur
yusur.tech/sriov_dpu: 7
yusur.tech/sriov_dpu: 7
yusur.tech/sriov_dpu 0 0

kubectl apply -f https://raw.githubusercontent.com/k8snetworkplumbingwg/multus-cni/v4.0.2/deployments/multus-daemonset-thick.yml

apiVersion:
"k8s.cni.cncf.io/v1"

kind:
NetworkAttachmentDefinition

metadata:
name: test
namespace: kube-system
annotations:

k8s.v1.cni.cncf.io/resourceName: yusur.tech/sriov_dpu
spec:

config: '{
"cniVersion": "0.3.1",
"name": "kube-ovn",
"plugins":[

{
"type":"kube-ovn",
"server_socket":"/run/openvswitch/kube-ovn-daemon.sock",
"provider": "test.kube-system.ovn"

},
{

"type":"portmap",
"capabilities":{

"portMappings":true
}

}
]

}

•

1.

wget https://github.com/kubeovn/kube-ovn/blob/release-1.12/dist/images/install.sh

7.18.3 Install Multus-CNI

- 237/324 - 2025 Kube-OVN Team

Install Kube-OVN:

Create Pods with VF NICsCreate Pods with VF NICs

Pods that use VF for network offload acceleration can be created using the following yaml:

v1.multus-cni.io/default-network : should be the {namespace}/{name} of related NetworkAttachmentDefinition.

Offload verification

Running the following command in the ovs-ovn container of the Pod run node to observe if offload success.

 PDF Slack Support

July 30, 2025

August 13, 2024

GitHub

7.18.5 Comments

ENABLE_MIRROR=${ENABLE_MIRROR:-false}
HW_OFFLOAD=${HW_OFFLOAD:-true}
ENABLE_LB=${ENABLE_LB:-false}
IFACE="p0"

1.

bash install.sh

apiVersion: v1
kind: Pod
metadata:

name: nginx
namespace: default
annotations:

v1.multus-cni.io/default-network: kube-system/test
spec:

containers:
- name: nginx

image: docker.io/library/nginx:alpine
resources:

requests:
yusur.tech/sriov_dpu: '1'

limits:
yusur.tech/sriov_dpu: '1'

•

ovs-appctl dpctl/dump-flows -m type=offloaded
ufid:67c2e10f-92d4-4574-be70-d072815ff166, skb_priority(0/0),skb_mark(0/0),ct_state(0/0x23),ct_zone(0/0),ct_mark(0/0),ct_label(0/0),recirc_id(0),dp_hash(0/
0),in_port(d85b161b6840_h),packet_type(ns=0/0,id=0/0),eth(src=0a:c9:1c:70:01:09,dst=8a:18:a4:22:b7:7d),eth_type(0x0800),ipv4(src=10.0.1.10,dst=10.
0.1.6,proto=6,tos=0/0x3,ttl=0/0,frag=no),tcp(src=60774,dst=9001), packets:75021, bytes:109521630, offload_packets:75019, offload_bytes:109521498, used:
3.990s,offloaded:yes,dp:tc, actions:set(tunnel(tun_id=0x5,dst=192.168.201.12,ttl=64,tp_dst=6081,geneve({class=0x102,type=0x80,len=4,0xa0006}),flags(csum|
key))),genev_sys_6081
ufid:7940666e-a0bd-42a5-8116-1e84e81bb338, skb_priority(0/0),tunnel(tun_id=0x5,src=192.168.201.12,dst=192.168.201.11,ttl=0/
0,tp_dst=6081,geneve({class=0x102,type=0x80,len=4,0x6000a}),flags(+key)),skb_mark(0/0),ct_state(0/0),ct_zone(0/0),ct_mark(0/0),ct_label(0/
0),recirc_id(0),dp_hash(0/0),in_port(genev_sys_6081),packet_type(ns=0/0,id=0/0),eth(src=8a:18:a4:22:b7:7d,dst=0a:c9:1c:70:01:09),eth_type(0x0800),ipv4(src=10.
0.1.6,dst=10.0.1.10,proto=6,tos=0/0,ttl=0/0,frag=no),tcp(src=9001,dst=60774), packets:6946, bytes:459664, offload_packets:6944, offload_bytes:459532, used:
4.170s, dp:tc,offloaded:yes,actions:d85b161b6840_h

7.18.5 Comments

- 238/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.19 DPDK Support

This document describes how Kube-OVN combines with OVS-DPDK to provide a DPDK-type network interface to KubeVirt's

virtual machines.

Upstream KubeVirt does not currently support OVS-DPDK, users need to use the downstream patch Vhostuser implementation to

build KubeVirt by themselves or KVM Device Plugin to use OVS-DPDK.

7.19.1 Prerequisites

The node needs to provide a dedicated NIC for the DPDK driver to run.

The node needs to have Hugepages enabled.

7.19.2 Set DPDK driver

Here we use driverctl for example, please refer to the DPDK documentation for specific parameters and other driver usage:

7.19.3 Configure Nodes

Labeling OVS-DPDK-enabled nodes for Kube-OVN to recognize:

Create the configuration file ovs-dpdk-config in the /opt/ovs-config directory on nodes that support DPDK.

ENCAP_IP : The tunnel endpoint address.

DPDK_DEV : The PCI ID of the device.

7.19.4 Install Kube-OVN

Download scripts:

Enable the DPDK installation option:

7.19.5 Usage

Here we verify the OVS-DPDK functionality by creating a virtual machine with a vhostuser type NIC.

Here we use the KVM Device Plugin to create virtual machines. For more information on how to use it, please refer to [KVM

Device Plugin].(https://github.com/kubevirt/kubernetes-device-plugins/blob/master/docs/README.kvm.md).

Create NetworkAttachmentDefinition:

•

•

driverctl set-override 0000:00:0b.0 uio_pci_generic

kubectl label nodes <node> ovn.kubernetes.io/ovs_dp_type="userspace"

ENCAP_IP=192.168.122.193/24
DPDK_DEV=0000:00:0b.0

•

•

wget https://raw.githubusercontent.com/kubeovn/kube-ovn/release-1.14/dist/images/install.sh

bash install.sh --with-hybrid-dpdk

kubectl apply -f https://raw.githubusercontent.com/kubevirt/kubernetes-device-plugins/master/manifests/kvm-ds.yml

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

name: ovn-dpdk
namespace: default

7.19 DPDK Support

- 239/324 - 2025 Kube-OVN Team

https://github.com/kubevirt/kubevirt/pull/3208
https://github.com/kubevirt/kubernetes-device-plugins/blob/master/docs/README.kvm.md
https://www.dpdk.org/
https://github.com/kubevirt/kubernetes-device-plugins/blob/master/docs/README.kvm.md

Create a VM image using the following Dockerfile:

Create a virtual machine:

spec:
config: >-

{
"cniVersion": "0.3.0",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "ovn-dpdk.default.ovn",
"vhost_user_socket_volume_name": "vhostuser-sockets",
"vhost_user_socket_name": "sock"

}

FROM quay.io/kubevirt/virt-launcher:v0.46.1

wget http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud.qcow2
COPY CentOS-7-x86_64-GenericCloud.qcow2 /var/lib/libvirt/images/CentOS-7-x86_64-GenericCloud.qcow2

apiVersion: v1
kind: ConfigMap
metadata:

name: vm-config
data:

start.sh: |
chmod u+w /etc/libvirt/qemu.conf
echo "hugetlbfs_mount = \"/dev/hugepages\"" >> /etc/libvirt/qemu.conf
virtlogd &
libvirtd &

mkdir /var/lock

sleep 5

virsh define /root/vm/vm.xml
virsh start vm

tail -f /dev/null
vm.xml: |

<domain type='kvm'>
<name>vm</name>
<uuid>4a9b3f53-fa2a-47f3-a757-dd87720d9d1d</uuid>
<memory unit='KiB'>2097152</memory>
<currentMemory unit='KiB'>2097152</currentMemory>
<memoryBacking>

<hugepages>
<page size='2' unit='M' nodeset='0'/>

</hugepages>
</memoryBacking>
<vcpu placement='static'>2</vcpu>
<cputune>

<shares>4096</shares>
<vcpupin vcpu='0' cpuset='4'/>
<vcpupin vcpu='1' cpuset='5'/>
<emulatorpin cpuset='1,3'/>

</cputune>
<os>

<type arch='x86_64' machine='pc'>hvm</type>
<boot dev='hd'/>

</os>
<features>

<acpi/>
<apic/>

</features>
<cpu mode='host-model'>

<model fallback='allow'/>
<topology sockets='1' cores='2' threads='1'/>
<numa>

<cell id='0' cpus='0-1' memory='2097152' unit='KiB' memAccess='shared'/>
</numa>

</cpu>
<on_reboot>restart</on_reboot>
<devices>

<emulator>/usr/libexec/qemu-kvm</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='qcow2' cache='none'/>
<source file='/var/lib/libvirt/images/CentOS-7-x86_64-GenericCloud.qcow2'/>
<target dev='vda' bus='virtio'/>

</disk>

<interface type='vhostuser'>
<mac address='00:00:00:0A:30:89'/>
<source type='unix' path='/var/run/vm/sock' mode='server'/>
<model type='virtio'/>

<driver queues='2'>
<host mrg_rxbuf='off'/>

</driver>
</interface>
<serial type='pty'>

<target type='isa-serial' port='0'>

7.19.5 Usage

- 240/324 - 2025 Kube-OVN Team

Wait for the virtual machine to be created successfully and then go to the Pod to configure the virtual machine:

<model name='isa-serial'/>
</target>

</serial>
<console type='pty'>

<target type='serial' port='0'/>
</console>
<channel type='unix'>

<source mode='bind' path='/var/lib/libvirt/qemu/channel/target/domain-1-vm/org.qemu.guest_agent.0'/>
<target type='virtio' name='org.qemu.guest_agent.0' state='connected'/>
<alias name='channel0'/>
<address type='virtio-serial' controller='0' bus='0' port='1'/>

</channel>

</devices>
</domain>

apiVersion: apps/v1
kind: Deployment
metadata:

name: vm-deployment
labels:

app: vm
spec:

replicas: 1
selector:

matchLabels:
app: vm

template:
metadata:

labels:
app: vm

annotations:
k8s.v1.cni.cncf.io/networks: default/ovn-dpdk
ovn-dpdk.default.ovn.kubernetes.io/ip_address: 10.16.0.96
ovn-dpdk.default.ovn.kubernetes.io/mac_address: 00:00:00:0A:30:89

spec:
nodeSelector:

ovn.kubernetes.io/ovs_dp_type: userspace
securityContext:

runAsUser: 0
volumes:

- name: vhostuser-sockets
emptyDir: {}

- name: xml
configMap:

name: vm-config
- name: hugepage

emptyDir:
medium: HugePages-2Mi

- name: libvirt-runtime
emptyDir: {}

containers:
- name: vm

image: vm-vhostuser:latest
command: ["bash", "/root/vm/start.sh"]
securityContext:

capabilities:
add:

- NET_BIND_SERVICE
- SYS_NICE
- NET_RAW
- NET_ADMIN

privileged: false
runAsUser: 0

resources:
limits:

cpu: '2'
devices.kubevirt.io/kvm: '1'
memory: '8784969729'
hugepages-2Mi: 2Gi

requests:
cpu: 666m
devices.kubevirt.io/kvm: '1'
ephemeral-storage: 50M
memory: '4490002433'

volumeMounts:
- name: vhostuser-sockets

mountPath: /var/run/vm
- name: xml

mountPath: /root/vm/
- mountPath: /dev/hugepages

name: hugepage
- name: libvirt-runtime

mountPath: /var/run/libvirt

virsh set-user-password vm root 12345
Password set successfully for root in vm

virsh console vm
Connected to domain 'vm'

7.19.5 Usage

- 241/324 - 2025 Kube-OVN Team

Next, you can log into the virtual machine for network configuration and test:

 PDF Slack Support

February 15, 2023

May 24, 2022

GitHub

7.19.6 Comments

Escape character is ^] (Ctrl +])

CentOS Linux 7 (Core)
Kernel 3.10.0-1127.el7.x86_64 on an x86_64

localhost login: root
Password:
Last login: Fri Feb 25 09:52:54 on ttyS0

ip link set eth0 mtu 1400
ip addr add 10.16.0.96/16 dev eth0
ip ro add default via 10.16.0.1
ping 114.114.114.114

7.19.6 Comments

- 242/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.20 Integration with OpenStack

In some cases, users need to run virtual machines with OpenStack and containers with Kubernetes, and need the network to

interoperate between containers and virtual machines and be under a unified control plane. If the OpenStack Neutron side also

uses OVN as the underlying network, then Kube-OVN can use either cluster interconnection or shared underlying OVN to

connect the OpenStack and Kubernetes networks.

7.20.1 Cluster Interconnection

This pattern is similar to Cluster Inter-Connection with OVN-IC to connect two Kubernetes cluster networks, except that the two

ends of the cluster are replaced with OpenStack and Kubernetes.

Prerequisites

The subnet CIDRs within OpenStack and Kubernetes cannot overlap with each other in auto-route mode.

A set of machines needs to exist that can be accessed by each cluster over the network and used to deploy controllers that

interconnect across clusters.

Each cluster needs to have a set of machines that can access each other across clusters via IP as the gateway nodes.

This solution only connects to the Kubernetes default subnet with selected VPC in OpenStack.

Deploy OVN-IC DB

Start the OVN-IC DB with the following command:

Kubernetes Side Operations

Create ovn-ic-config ConfigMap in kube-system Namespace:

enable-ic : Whether to enable cluster interconnection.

az-name : Distinguish the cluster names of different clusters, each interconnected cluster needs to be different.

ic-db-host : Address of the node where the OVN-IC DB is deployed.

ic-nb-port : OVN-IC Northbound Database port, default 6645.

ic-sb-port : OVN-IC Southbound Database port, default 6645.

gw-nodes : The name of the nodes in the cluster interconnection that takes on the work of the gateways, separated by commas.

auto-route : Whether to automatically publish and learn routes.

OpenStack Side Operations

Create logical routers that interconnect with Kubernetes:

1.

2.

3.

4.

docker run --name=ovn-ic-db -d --network=host -v /etc/ovn/:/etc/ovn -v /var/run/ovn:/var/run/ovn -v /var/log/ovn:/var/log/ovn kubeovn/kube-ovn:v1.14.4 bash
start-ic-db.sh

apiVersion: v1
kind: ConfigMap
metadata:

name: ovn-ic-config
namespace: kube-system

data:
enable-ic: "true"
az-name: "az1"
ic-db-host: "192.168.65.3"
ic-nb-port: "6645"
ic-sb-port: "6646"
gw-nodes: "az1-gw"
auto-route: "true"

•

•

•

•

•

•

•

7.20 Integration with OpenStack

- 243/324 - 2025 Kube-OVN Team

Set the availability zone name in the OVN northbound database within OpenStack, which needs to be different from the other

interconnected clusters:

Start the OVN-IC controller at a node that has access to the OVN-IC DB:

ovn-ic-nb-db , ovn-ic-sb-db : OVN-IC Northbound database and southbound database addresses.

ovn-northd-nb-db , ovn-northd-sb-db : Current cluster OVN northbound database and southbound data address.

Configuration gateway nodes:

The next step is to create a logical topology by operating the OVN in OpenStack.

Connect the ts interconnect switch and the router0 logical router, and set the relevant rules:

Verify that OpenStack has learned the Kubernetes routing rules:

Next, you can create a virtual machine under the router0 network to verify that it can interconnect with Pods under Kubernetes.

7.20.2 Shared Underlay OVN

In this scenario, OpenStack and Kubernetes share the same OVN, so concepts such as VPC and Subnet can be pulled together for

better control and interconnection.

In this mode we deploy the OVN normally using Kube-OVN, and OpenStack modifies the Neutron configuration to connect to the

same OVN DB. OpenStack requires networking-ovn as a Neutron backend implementation.

Neutron Modification

Modify the Neutron configuration file /etc/neutron/plugins/ml2/ml2_conf.ini :

ovn_nb_connection , ovn_sb_connection : The address needs to be changed to the address of the ovn-central nodes deployed by

Kube-OVN.

openstack router create router0
openstack router list
+--------------------------------------+---------+--------+-------+----------------------------------+
| ID | Name | Status | State | Project |
+--------------------------------------+---------+--------+-------+----------------------------------+
| d5b38655-249a-4192-8046-71aa4d2b4af1 | router0 | ACTIVE | UP | 98a29ab7388347e7b5ff8bdd181ba4f9 |
+--------------------------------------+---------+--------+-------+----------------------------------+

ovn-nbctl set NB_Global . name=op-az

/usr/share/ovn/scripts/ovn-ctl --ovn-ic-nb-db=tcp:192.168.65.3:6645 \
--ovn-ic-sb-db=tcp:192.168.65.3:6646 \
--ovn-northd-nb-db=unix:/run/ovn/ovnnb_db.sock \
--ovn-northd-sb-db=unix:/run/ovn/ovnsb_db.sock \
start_ic

•

•

ovs-vsctl set open_vswitch . external_ids:ovn-is-interconn=true

ovn-nbctl lrp-add router0 lrp-router0-ts 00:02:ef:11:39:4f 169.254.100.73/24
ovn-nbctl lsp-add ts lsp-ts-router0 -- lsp-set-addresses lsp-ts-router0 router \

-- lsp-set-type lsp-ts-router0 router \
-- lsp-set-options lsp-ts-router0 router-port=lrp-router0-ts

ovn-nbctl lrp-set-gateway-chassis lrp-router0-ts {gateway chassis} 1000
ovn-nbctl set NB_Global . options:ic-route-adv=true options:ic-route-learn=true

ovn-nbctl lr-route-list router0
IPv4 Routes

10.0.0.22 169.254.100.34 dst-ip (learned)
10.16.0.0/16 169.254.100.34 dst-ip (learned)

[ovn]
...
ovn_nb_connection = tcp:[192.168.137.176]:6641,tcp:[192.168.137.177]:6641,tcp:[192.168.137.178]:6641
ovn_sb_connection = tcp:[192.168.137.176]:6642,tcp:[192.168.137.177]:6642,tcp:[192.168.137.178]:6642
ovn_l3_scheduler = OVN_L3_SCHEDULER

•

7.20.2 Shared Underlay OVN

- 244/324 - 2025 Kube-OVN Team

Modify the OVS configuration for each node:

external-ids:ovn-remote : The address needs to be changed to the address of the ovn-central nodes deployed by Kube-OVN.

ovn-encap-ip : Change to the IP address of the current node.

Using OpenStack Internal Resources in Kubernetes

The next section describes how to query OpenStack's network resources in Kubernetes and create Pods in the subnet from

OpenStack.

Query the existing network resources in OpenStack for the following resources that have been pre-created.

On the Kubernetes side, query the VPC resources from OpenStack:

neutron-22040ed5-0598-4f77-bffd-e7fd4db47e93 is the VPC resources synchronized from OpenStack.

Next, you can create Pods and run them according to Kube-OVN's native VPC and Subnet operations.

Bind VPC, Subnet to Namespace net2 and create Pod:

ovs-vsctl set open . external-ids:ovn-remote=tcp:[192.168.137.176]:6642,tcp:[192.168.137.177]:6642,tcp:[192.168.137.178]:6642
ovs-vsctl set open . external-ids:ovn-encap-type=geneve
ovs-vsctl set open . external-ids:ovn-encap-ip=192.168.137.200

•

•

openstack router list
+--------------------------------------+---------+--------+-------+----------------------------------+
| ID | Name | Status | State | Project |
+--------------------------------------+---------+--------+-------+----------------------------------+
| 22040ed5-0598-4f77-bffd-e7fd4db47e93 | router0 | ACTIVE | UP | 62381a21d569404aa236a5dd8712449c |
+--------------------------------------+---------+--------+-------+----------------------------------+
openstack network list
+--------------------------------------+----------+--------------------------------------+
| ID | Name | Subnets |
+--------------------------------------+----------+--------------------------------------+
| cd59e36a-37db-4c27-b709-d35379a7920f | provider | 01d73d9f-fdaa-426c-9b60-aa34abbfacae |
+--------------------------------------+----------+--------------------------------------+
openstack subnet list
+--------------------------------------+-------------+--------------------------------------+----------------+
| ID | Name | Network | Subnet |
+--------------------------------------+-------------+--------------------------------------+----------------+
| 01d73d9f-fdaa-426c-9b60-aa34abbfacae | provider-v4 | cd59e36a-37db-4c27-b709-d35379a7920f | 192.168.1.0/24 |
+--------------------------------------+-------------+--------------------------------------+----------------+
openstack server list
+--------------------------------------+-------------------+--------+-----------------------+--------+--------+
| ID | Name | Status | Networks | Image | Flavor |
+--------------------------------------+-------------------+--------+-----------------------+--------+--------+
| 8433d622-a8d6-41a7-8b31-49abfd64f639 | provider-instance | ACTIVE | provider=192.168.1.61 | ubuntu | m1 |
+--------------------------------------+-------------------+--------+-----------------------+--------+--------+

kubectl get vpc
NAME STANDBY SUBNETS
neutron-22040ed5-0598-4f77-bffd-e7fd4db47e93 true ["neutron-cd59e36a-37db-4c27-b709-d35379a7920f"]
ovn-cluster true ["join","ovn-default"]

apiVersion: v1
kind: Namespace
metadata:

name: net2

apiVersion: kubeovn.io/v1
kind: Vpc
metadata:

creationTimestamp: "2021-06-20T13:34:11Z"
generation: 2
labels:

ovn.kubernetes.io/vpc_external: "true"
name: neutron-22040ed5-0598-4f77-bffd-e7fd4db47e93
resourceVersion: "583728"
uid: 18d4c654-f511-4def-a3a0-a6434d237c1e

spec:
namespaces:
- net2

kind: Subnet
apiVersion: kubeovn.io/v1
metadata:

name: net2
spec:

vpc: neutron-22040ed5-0598-4f77-bffd-e7fd4db47e93
namespaces:

- net2

7.20.2 Shared Underlay OVN

- 245/324 - 2025 Kube-OVN Team

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

7.20.3 Comments

cidrBlock: 12.0.1.0/24
natOutgoing: false

apiVersion: v1
kind: Pod
metadata:

name: ubuntu
namespace: net2

spec:
containers:

- image: docker.io/kubeovn/kube-ovn:v1.8.0
command:

- "sleep"
- "604800"

imagePullPolicy: IfNotPresent
name: ubuntu

restartPolicy: Always

7.20.3 Comments

- 246/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

7.21 Use IPsec to encrypt communication between nodes

This function is supported from v1.13.0 onwards, and the host UDP 500 and 4500 ports need to be available.

7.21.1 Encryption process

kube-ovn-cni is responsible for applying for certificates and will create a certificate signing request to kube-ovn-controller. kube-

ovn-controller will automatically approve the certificate application, and then kube-ovn-cni will generate an ipsec configuration

file based on the certificate and finally start the ipsec process.

7.21.2 Configure IPsec

Change the args --enable-ovn-ipsec=false in kube-ovn-controller and kube-ovn-cni to --enable-ovn-ipsec=true .

 PDF Slack Support

August 12, 2024

April 18, 2023

GitHub

7.21.3 Comments

7.21 Use IPsec to encrypt communication between nodes

- 247/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/changluyi
https://github.com/changluyi

7.22 OVN Remote Port Mirroring

This feature provides ability to mirror the traffic of the specified Pod and direction, and to send the mirrored traffic to a remote

destination.

This feature requires Kube-OVN version not lower than v1.12.

7.22.1 Install Multus-CNI

Install Multus-CNI by referring the Multus-CNI Document.

7.22.2 Create NetworkAttachmentDefinition

Create the following NetworkAttachmentDefinition:

Format of the provider field is <NAME>.<NAMESPACE>.ovn .

7.22.3 Create Underlay Network

The mirrored traffic is encapsulated before transmition, so MTU of the network used to transmit the traffic should be greater

than the mirrored LSP/Pod. Here we are using an underlay network.

Create the following underlay network:

The subnet's provider MUST be the same as the provider of the NetworkAttachmentDefinition created above.

7.22.4 Create Receiving Pod

Create the following Pod:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:

name: attachnet
namespace: default

spec:
config: |

{
"cniVersion": "0.3.1",
"type": "kube-ovn",
"server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
"provider": "attachnet.default.ovn"

}

apiVersion: kubeovn.io/v1
kind: ProviderNetwork
metadata:

name: net1
spec:

defaultInterface: eth1

apiVersion: kubeovn.io/v1
kind: Vlan
metadata:

name: vlan1
spec:

id: 0
provider: net1

apiVersion: kubeovn.io/v1
kind: Subnet
metadata:

name: subnet1
spec:

protocol: IPv4
cidrBlock: 172.19.0.0/16
excludeIps:
- 172.19.0.2..172.19.0.20
gateway: 172.19.0.1
vlan: vlan1
provider: attachnet.default.ovn

7.22 OVN Remote Port Mirroring

- 248/324 - 2025 Kube-OVN Team

https://github.com/k8snetworkplumbingwg/multus-cni

After the Pod has been created, checkout the IP addresses:

The IP address 172.19.0.21 will be used later.

7.22.5 Create OVN Remote Port Mirroring

Create the following OVN remote port mirroring:

coredns-787d4945fb-gpnkb.kube-system is the OVN LSP name with a format <POD_NAME>.<POD_NAMESPACE> .

Here is the OVN command usage:

7.22.6 Configure Receiving Pod

Execute the following commands in the Pod:

Now you can capture the mirrored packets:

apiVersion: v1
kind: Pod
metadata:

name: pod1
annotations:

k8s.v1.cni.cncf.io/networks: default/attachnet
spec:

containers:
- name: bash

image: docker.io/kubeovn/kube-ovn:v1.14.4
args:
- bash
- -c
- sleep infinity
securityContext:

privileged: true

$ kubectl get ips | grep pod1
pod1.default 10.16.0.12 00:00:00:FF:34:24 kube-ovn-worker ovn-default
pod1.default.attachnet.default.ovn 172.19.0.21 00:00:00:A0:30:68 kube-ovn-worker subnet1

kubectl ko nbctl mirror-add mirror1 gre 99 from-lport 172.19.0.21
kubectl ko nbctl lsp-attach-mirror coredns-787d4945fb-gpnkb.kube-system mirror1

ovn-nbctl mirror-add <NAME> <TYPE> <INDEX> <FILTER> <IP>

NAME - add a mirror with given name
TYPE - specify TYPE 'gre' or 'erspan'
INDEX - specify the tunnel INDEX value
 (indicates key if GRE, erpsan_idx if ERSPAN)
FILTER - specify FILTER for mirroring selection
 ('to-lport' / 'from-lport')
IP - specify Sink / Destination i.e. Remote IP

ovn-nbctl mirror-del [NAME] remove mirrors
ovn-nbctl mirror-list print mirrors

ovn-nbctl lsp-attach-mirror PORT MIRROR attach source PORT to MIRROR
ovn-nbctl lsp-detach-mirror PORT MIRROR detach source PORT from MIRROR

root@pod1:/kube-ovn# ip link add mirror1 type gretap local 172.19.0.21 key 99 dev net1
root@pod1:/kube-ovn# ip link set mirror1 up

root@pod1:/kube-ovn# tcpdump -i mirror1 -nnve
tcpdump: listening on mirror1, link-type EN10MB (Ethernet), snapshot length 262144 bytes
05:13:30.328808 00:00:00:a3:f5:e2 > 00:00:00:97:0f:6e, ethertype ARP (0x0806), length 42: Ethernet (len 6), IPv4 (len 4), Request who-has 10.16.0.7 tell 10.
16.0.4, length 28
05:13:30.559167 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 212: (tos 0x0, ttl 64, id 57364, offset 0, flags [DF], proto UDP (17),
length 198)

10.16.0.4.53 > 10.16.0.6.50472: 34511 NXDomain*- 0/1/1 (170)
05:13:30.559343 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 212: (tos 0x0, ttl 64, id 57365, offset 0, flags [DF], proto UDP (17),
length 198)

10.16.0.4.53 > 10.16.0.6.45177: 1659 NXDomain*- 0/1/1 (170)
05:13:30.560625 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 200: (tos 0x0, ttl 64, id 57367, offset 0, flags [DF], proto UDP (17),
length 186)

10.16.0.4.53 > 10.16.0.6.43848: 2636*- 0/1/1 (158)
05:13:30.562774 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 191: (tos 0x0, ttl 64, id 57368, offset 0, flags [DF], proto UDP (17),
length 177)

10.16.0.4.53 > 10.16.0.6.37755: 48737 NXDomain*- 0/1/1 (149)
05:13:30.563523 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 187: (tos 0x0, ttl 64, id 57369, offset 0, flags [DF], proto UDP (17),
length 173)

7.22.5 Create OVN Remote Port Mirroring

- 249/324 - 2025 Kube-OVN Team

7.22.7 Notice

If you are using ERSPAN as the encapsulation protocol, the Linux kernel version of the OVN nodes and remote devices must not be

lower than 4.14. If you are using ERSPAN as the encapsulation protocol and using IPv6 as the transport network, the Linux kernel

version must not be lower than 4.16.

The transmission of mirrored traffic is unidirectional, so you only need to ensure that the OVN node can access the remote device.

 PDF Slack Support

July 30, 2025

April 20, 2023

GitHub

7.22.8 Comments

10.16.0.4.53 > 10.16.0.6.53887: 45519 NXDomain*- 0/1/1 (145)
05:13:30.564940 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 201: (tos 0x0, ttl 64, id 57370, offset 0, flags [DF], proto UDP (17),
length 187)

10.16.0.4.53 > 10.16.0.6.40846: 25745 NXDomain*- 0/1/1 (159)
05:13:30.565140 00:00:00:a3:f5:e2 > 00:00:00:89:d5:cc, ethertype IPv4 (0x0800), length 201: (tos 0x0, ttl 64, id 57371, offset 0, flags [DF], proto UDP (17),
length 187)

10.16.0.4.53 > 10.16.0.6.45214: 61875 NXDomain*- 0/1/1 (159)
05:13:30.566023 00:00:00:a3:f5:e2 > 00:00:00:55:e4:4e, ethertype IPv4 (0x0800), length 80: (tos 0x0, ttl 64, id 45937, offset 0, flags [DF], proto UDP (17),
length 66)

10.16.0.4.44116 > 172.18.0.1.53: 16025+ [1au] AAAA? kube-ovn.io. (38)

1.

2.

7.22.7 Notice

- 250/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/zhangzujian
https://github.com/zhangzujian

7.23 NodeLocal DNSCache and Kube-OVN adaptation

NodeLocal DNSCache improves cluster DNS performance by running DNS cache as a DaemonSet on cluster nodes. This function

can also be adapted to Kube-OVN.

7.23.1 Nodelocal DNSCache deployment

Deploy Kubernetes NodeLocal DNScache

This step refers to Kubernetes official website configuration nodelocaldnscache.

Deploy with the following script:

Modify the kubelet configuration file on each node, modify the clusterDNS field in /var/lib/kubelet/config.yaml to the local DNS

IP 169.254.20.10, and then restart the kubelet service.

Kube-OVN corresponding DNS configuration

After deploying the Nodelocal DNScache component of Kubernetes, Kube-OVN needs to make the following modifications:

UNDERLAY SUBNET ENABLE U2O SWITCH

If the underlay subnet needs to use the local DNS function, you need to enable the U2O function, that is, configure

spec.u2oInterconnection = true in kubectl edit subnet {your subnet} . If it is an overlay subnet, this step is not required.

SPECIFY THE CORRESPONDING LOCAL DNS IP FOR KUBE-OVN-CONTROLLER

Add field to spec.template.spec.containers.args --node-local-dns-ip=169.254.20.10

REBUILD THE CREATED PODS

The reason for this step is to let the Pod regenerate /etc/resolv.conf so that the nameserver points to the local DNS IP. If the

nameserver of the Pod is not rebuilt, it will still use the DNS ClusterIP of the cluster. At the same time, if the u2o switch is turned

on, the Pod needs to be rebuilt to regenerate the Pod gateway.

7.23.2 Validator local DNS cache function

After the above configuration is completed, you can find the Pod verification as follows. You can see that the Pod's DNS server

points to the local 169.254.20.10 and successfully resolves the domain name:

You can also capture packets at the node and verify as follows. You can see that the DNS query message reaches the local DNS

service through the ovn0 network card, and the DNS response message returns in the same way:

#!bin/bash

localdns=169.254.20.10
domain=cluster.local
kubedns=10.96.0.10

wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/dns/nodelocaldns/nodelocaldns.yaml
sed -i "s/__PILLAR__LOCAL__DNS__/$localdns/g; s/__PILLAR__DNS__DOMAIN__/$domain/g; s/,__PILLAR__DNS__SERVER__//g; s/__PILLAR__CLUSTER__DNS__/$kubedns/g"
nodelocaldns.yaml

kubectl apply -f nodelocaldns.yaml

kubectl edit deployment kube-ovn-controller -n kube-system

kubectl exec -it pod1 -- nslookup github.com
Server: 169.254.20.10
Address: 169.254.20.10:53

Name: github.com
Address: 20.205.243.166

7.23 NodeLocal DNSCache and Kube-OVN adaptation

- 251/324 - 2025 Kube-OVN Team

https://kubernetes.io/zh-cn/docs/tasks/administer-cluster/nodelocaldns/

7.23.3 Note

⚠️ Note:

If NetworkPolicy is configured in your environment, make sure to explicitly allow traffic to the local DNS IP (such as

169.254.20.10) and the node's CIDR in your NetworkPolicy. This prevents DNS requests and responses from being blocked by

NetworkPolicy, which could cause Pods to fail DNS resolution.

NetworkPolicy Example

Below is an example NetworkPolicy that allows Pods to access the local DNS cache and node network:

Notes:

169.254.20.10/32 : The IP address of the local DNS cache

10.0.0.0/8 : Example node CIDR; please modify according to your actual node network range

 PDF Slack Support

July 3, 2025

May 5, 2023

GitHub

tcpdump -i any port 53

06:20:00.441889 659246098c56_h P ifindex 17 00:00:00:73:f1:06 ethertype IPv4 (0x0800), length 75: 10.16.0.2.40230 > 169.254.20.10.53: 1291+ A? baidu.com.
(27)
06:20:00.441889 ovn0 In ifindex 7 00:00:00:50:32:cd ethertype IPv4 (0x0800), length 75: 10.16.0.2.40230 > 169.254.20.10.53: 1291+ A? baidu.com. (27)
06:20:00.441950 659246098c56_h P ifindex 17 00:00:00:73:f1:06 ethertype IPv4 (0x0800), length 75: 10.16.0.2.40230 > 169.254.20.10.53: 1611+ AAAA?
baidu.com. (27)
06:20:00.441950 ovn0 In ifindex 7 00:00:00:50:32:cd ethertype IPv4 (0x0800), length 75: 10.16.0.2.40230 > 169.254.20.10.53: 1611+ AAAA? baidu.com. (27)
06:20:00.442203 ovn0 Out ifindex 7 00:00:00:52:99:d8 ethertype IPv4 (0x0800), length 145: 169.254.20.10.53 > 10.16.0.2.40230: 1611* 0/1/0 (97)
06:20:00.442219 659246098c56_h Out ifindex 17 00:00:00:ea:b3:5e ethertype IPv4 (0x0800), length 145: 169.254.20.10.53 > 10.16.0.2.40230: 1611* 0/1/0 (97)
06:20:00.442273 ovn0 Out ifindex 7 00:00:00:52:99:d8 ethertype IPv4 (0x0800), length 125: 169.254.20.10.53 > 10.16.0.2.40230: 1291* 2/0/0 A 39.156.66.10, A
110.242.68.66 (77)
06:20:00.442278 659246098c56_h Out ifindex 17 00:00:00:ea:b3:5e ethertype IPv4 (0x0800), length 125: 169.254.20.10.53 > 10.16.0.2.40230: 1291* 2/0/0 A 39.
156.66.10, A 110.242.68.66 (77)

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-local-dns-and-node-cidr
namespace: default # Change the namespace as needed

spec:
podSelector: {} # Apply to all Pods; add label selectors as needed
policyTypes:
- Ingress
- Egress
egress:
Allow access to local DNS cache
- to:

- ipBlock:
cidr: 169.254.20.10/32

Allow access to node CIDR (modify according to your actual node network CIDR)
- to:

- ipBlock:
cidr: 10.0.0.0/8 # Example node CIDR; modify as needed

ingress:
Allow responses from local DNS cache
- from:

- ipBlock:
cidr: 169.254.20.10/32

Allow traffic from node CIDR (modify according to your actual node network CIDR)
- from:

- ipBlock:
cidr: 10.0.0.0/8 # Example node CIDR; modify as needed

•

•

7.23.3 Note

- 252/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/changluyi
https://github.com/changluyi

7.23.4 Comments

7.23.4 Comments

- 253/324 - 2025 Kube-OVN Team

7.24 Default VPC NAT Policy Rule

7.24.1 Purpose

In the Overlay Subnet under the default VPC, when the natOutgoing switch is turned on, all Pods in the subnet need to do SNAT

to access the external network, but in some scenarios we do not want all Pods in the subnet to access the external network by

SNAT.

So the NAT Policy Rule is to provide a way for users to decide which CIDRs or IPs in the subnet to access the external network

need SNAT.

7.24.2 How to use NAT Policy Rules

Enable the natOutgoing switch in subnet.Spec , and add the field natOutgoingPolicyRules as follows:

The above case shows that there are two NAT policy rules:

Packets with source IP 10.0.11.0/30 or 10.0.11.254 will not perform SNAT when accessing the external network.

When a packet with source IP 10.0.11.128/26 and destination IP 114.114.114.114 or 8.8.8.8 accesses the external network, SNAT

will be performed.

Field description:

action : The action that will be executed for packets that meets the corresponding conditions of the match . The action is divided

into two types: forward and nat . When natOutgoingPolicyRules is not configured, packets are still SNAT by default.

match : Indicates the matching segment of the message, the matching segment includes srcIPs and dstIPs , here indicates the

source IP and destination IP of the message from the subnet to the external network. match.srcIPs and match.dstIPs support

multiple cidr and ip, separated by commas. If multiple match rules overlap, the action that is matched first will be executed

according to the order of the natOutgoingPolicyRules array.

 PDF Slack Support

September 1, 2023

June 5, 2023

GitHub

7.24.3 Comments

spec:
natOutgoing: true
natOutgoingPolicyRules:

- action: forward
match:

srcIPs: 10.0.11.0/30,10.0.11.254
- action: nat

match:
srcIPs: 10.0.11.128/26
dstIPs: 114.114.114.114,8.8.8.8

1.

2.

7.24 Default VPC NAT Policy Rule

- 254/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/changluyi
https://github.com/changluyi

8. Reference

8.1 Architecture

This document describes the general architecture of Kube-OVN, the functionality of each component and how they interact with

each other.

Overall, Kube-OVN serves as a bridge between Kubernetes and OVN, combining proven SDN with Cloud Native. This means that

Kube-OVN not only implements network specifications under Kubernetes, such as CNI, Service and Networkpolicy, but also

brings a large number of SDN domain capabilities to cloud-native, such as logical switches, logical routers, VPCs, gateways, QoS,

ACLs and traffic mirroring.

Kube-OVN also maintains a good openness to integrate with many technology solutions, such as Cilium, Submariner,

Prometheus, KubeVirt, etc.

8.1.1 Component Introduction

The components of Kube-OVN can be broadly divided into three categories.

Upstream OVN/OVS components.

Core Controller and Agent.

Monitoring, operation and maintenance tools and extension components.

Upstream OVN/OVS Components

This type of component comes from the OVN/OVS community with specific modifications for Kube-OVN usage scenarios. OVN/

OVS itself is a mature SDN system for managing virtual machines and containers, and we strongly recommend that users

interested in the Kube-OVN implementation read ovn-architecture(7) first to understand what OVN is and how to integrate with

it. Kube-OVN uses the northbound interface of OVN to create and coordinate virtual networks and map the network concepts

into Kubernetes.

•

•

•

8. Reference

- 255/324 - 2025 Kube-OVN Team

https://www.mankier.com/7/ovn-architecture

All OVN/OVS-related components have been packaged into images and are ready to run in Kubernetes.

OVN-CENTRAL

The ovn-central Deployment runs the control plane components of OVN, including ovn-nb , ovn-sb , and ovn-northd .

ovn-nb : Saves the virtual network configuration and provides an API for virtual network management. kube-ovn-controller will

mainly interact with ovn-nb to configure the virtual network.

ovn-sb : Holds the logical flow table generated from the logical network of ovn-nb , as well as the actual physical network state

of each node.

ovn-northd : translates the virtual network of ovn-nb into a logical flow table in ovn-sb .

Multiple instances of ovn-central will synchronize data via the Raft protocol to ensure high availability.

OVS-OVN

ovs-ovn runs as a DaemonSet on each node, with openvswitch , ovsdb , and ovn-controller running inside the Pod. These

components act as agents for ovn-central to translate logical flow tables into real network configurations.

Core Controller and Agent

This part is the core component of Kube-OVN, serving as a bridge between OVN and Kubernetes, bridging the two systems and

translating network concepts between them. Most of the core functions are implemented in these components.

KUBE-OVN-CONTROLLER

This component performs the translation of all resources within Kubernetes to OVN resources and acts as the control plane for

the entire Kube-OVN system. The kube-ovn-controller listens for events on all resources related to network functionality and

updates the logical network within the OVN based on resource changes. The main resources listened including:

Pod, Service, Endpoint, Node, NetworkPolicy, VPC, Subnet, Vlan, ProviderNetwork.

Taking the Pod event as an example, kube-ovn-controller listens to the Pod creation event, allocates the address via the built-in

in-memory IPAM function, and calls ovn-central to create logical ports, static routes and possible ACL rules. Next, kube-ovn-

controller writes the assigned address and subnet information such as CIDR, gateway, route, etc. to the annotation of the Pod.

This annotation is then read by kube-ovn-cni and used to configure the local network.

KUBE-OVN-CNI

This component runs on each node as a DaemonSet, implements the CNI interface, and operates the local OVS to configure the

local network.

This DaemonSet copies the kube-ovn binary to each machine as a tool for interaction between kubelet and kube-ovn-cni . This

binary sends the corresponding CNI request to kube-ovn-cni for further operation. The binary will be copied to the /opt/cni/bin

directory by default.

kube-ovn-cni will configure the specific network to perform the appropriate traffic operations, and the main tasks including:

Config ovn-controller and vswitchd .

Handle CNI Add/Del requests:

Create or delete veth pair and bind or unbind to OVS ports.

Configure OVS ports

Update host iptables/ipset/route rules.

Dynamically update the network QoS.

Create and configure the ovn0 NIC to connect the container network and the host network.

Configure the host NIC to implement Vlan/Underlay/EIP.

Dynamically config inter-cluster gateways.

•

•

•

1.

2.

a.

b.

c.

3.

4.

5.

6.

8.1.1 Component Introduction

- 256/324 - 2025 Kube-OVN Team

Monitoring, Operation and Maintenance Tools and Extension Components

These components provide monitoring, diagnostics, operations tools, and external interface to extend the core network

capabilities of Kube-OVN and simplify daily operations and maintenance.

KUBE-OVN-SPEAKER

This component is a DaemonSet running on a specific labeled nodes that publish routes to the external, allowing external access

to the container directly through the Pod IP.

For more information on how to use it, please refer to BGP Support.

KUBE-OVN-PINGER

This component is a DaemonSet running on each node to collect OVS status information, node network quality, network latency,

etc. The monitoring metrics collected can be found in Metrics.

KUBE-OVN-MONITOR

This component collects OVN status information and the monitoring metrics, all metrics can be found in Metrics.

KUBECTL-KO

This component is a kubectl plugin, which can quickly run common operations, for more usage, please refer to kubectl plugin.

 PDF Slack Support

July 30, 2025

May 24, 2022

GitHub

8.1.2 Comments

8.1.2 Comments

- 257/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

8.2 Kube-OVN RoadMap

This document defines high level goals for Kube-OVN project. We welcome community contributors to discuss and update this

Roadmap through Issues.

8.2.1 Network Datapath

Kube-OVN currently supports two network modes, Overlay and Underlay. We hope to improve the stability, performance, and

compatibility with the ecosystem of these two network modes in Kubernetes.

Improved Datapath network performance

Keeping up with the latest network API features in the community

Enhanced network monitoring and visualization capabilities

Addition of automated test cases for various scenarios

8.2.2 VPC Network

VPC network is a key feature of Kube-OVN, many functions have been used in production environment, and we hope to increase

the maturity of these functions and improve the user experiences.

Standardize multiple gateway solutions and provide the best egress practice

Provide more VPC internal basic network capabilities and solutions, such as DNS, DHCP, LoadBalancer, etc.

Simplify VPC operation complexity and provide a more comprehensive CLI

Supplement automated test cases for various scenarios

8.2.3 User Experience

Improve the user experience of Kubernetes cni, making container networking simpler, more reliable, and efficient.

Helm/Operator to automate daily operations

More organized metrics and grafana dashboard

Troubleshooting tools that can automatically find known issues

Integrated with other projects like kubeaz, kubekey, sealos etc.

 PDF Slack Support

2024 5 16

2024 5 9

GitHub

8.2.4 Comments

•

•

•

•

•

•

•

•

•

•

•

•

8.2 Kube-OVN RoadMap

- 258/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/bobz965
https://github.com/bobz965
https://github.com/web-flow
https://github.com/web-flow
https://github.com/oilbeater
https://github.com/oilbeater

8.3 Release Management

Kube-OVN currently mainly releases Minor and Patch versions. Minor versions include the addition of new features, major OVN/

OVS upgrades, internal architecture adjustments, and API changes. Patch versions focus primarily on bug fixes, security

vulnerability repairs, dependency upgrades, and are backward compatible with previous APIs.

8.3.1 Maintenance Strategy

Kube-OVN currently continuously maintains the main branch and the two most recent release branches, such as master ,

release-1.12 , and release-1.11 . The latest release branch (e.g., release-1.12) will undergo more frequent iterations and

releases, with all bug fixes, security vulnerabilities, and dependency upgrades being backported to this branch as much as

possible.

The previous release branch (e.g., release-1.11) will backport significant bug fixes and security vulnerability repairs.

8.3.2 Release Cycle

Minor versions are released as needed, based on whether there are significant new features or major architectural adjustments

completed in the main branch, currently about once every six months. Patch versions are triggered based on the bug fix status of

the branch, generally within a week after bug fixes are merged.

8.3.3 Patch Version Release Method

Currently, most of the work for Patch versions can be automated using the hack/release.sh script, with the main steps described

as follows:

Check the current branch build status (automated)

Push the new tag image to Docker Hub (automated)

Push the new tag code to GitHub (automated)

Update the version information in the code (automated)

Update the version information in the documentation repository (automated)

Generate Release Note PR (automated)

Merge Release Note (manual)

Manually merge the GitHub action generated Release Note PR

Modify the GitHub Release information (manual)

Edit the newly created Release on the GitHub Release page, change the title to the corresponding version number (e.g., v1.12.12),

and copy the Release Note generated in the previous step into the Release details

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

8.3 Release Management

- 259/324 - 2025 Kube-OVN Team

https://github.com/kubeovn/kube-ovn/blob/release-1.12/hack/release.sh

8.3.4 Minor Version Release Method

Currently, the main tasks for Minor branches still need to be completed manually, with the main steps described as follows:

Push a new release branch on GitHub, e.g., release-1.13 (manual)

Update the version information in the VERSION , dist/images/install.sh , charts/kube-ovn/values.yaml , and charts/kube-ovn/

Chart.yaml from the main branch to the next Minor version, e.g., v1.14.0 (manual)

Push the new tag image to Docker Hub (manual)

Push the new tag code to GitHub in the release branch (manual)

Create a new release branch in the documentation repository, e.g., v1.13 , and modify the version and branch information in the

mkdocs.yml file (manual)

Generate Release Note PR (automated)

Merge Release Note (manual)

Manually merge the GitHub action generated Release Note PR

Modify the GitHub Release information (manual)

Edit the newly created Release on the GitHub Release page, change the title to the corresponding version number (e.g., v1.13.0),

and copy the Release Note generated in the previous step into the Release details

Update the VERSION file in the release branch to the next Patch version, e.g., v1.13.1

 PDF Slack Support

May 16, 2024

May 8, 2024

GitHub

8.3.5 Comments

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

8.3.4 Minor Version Release Method

- 260/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/bobz965
https://github.com/bobz965
https://github.com/web-flow
https://github.com/web-flow
https://github.com/oilbeater
https://github.com/oilbeater

8.4 Feature Stage

In Kube-OVN, feature stage is classified into Alpha, Beta and GA, based on the degree of feature usage, documentation and test

coverage.

8.4.1 Definition of Stage

For Alpha stage functions:

The feature is not fully documented and well tested.

This feature may change or even be removed in the future.

This feature API is not guaranteed to be stable and may be removed.

Community provides low priority support for this feature and long-term support cannot be guaranteed.

Since feature stability and long-term support cannot be guaranteed, it can be tested and verified, but is not recommended for

production use.

For Beta stage functions:

This feature is partially documented and tested, but complete coverage is not guaranteed.

This feature may change in the future and the upgrade may affect the network, but it will not be removed as a whole.

This feature API may change in the future and the fields may be adjusted, but not removed as a whole.

This feature will be supported by the community in the long term.

It can be used on non-critical services as the functionality will be supported for a long time, but it is not recommended for

critical production service as there is a possibility of changes in functionality and APIs that may break the network.

For GA stage functions:

The feature has full documentation and test coverage.

The feature will remain stable and upgrades will be guaranteed to be smooth.

This feature API is not subject to disruptive changes.

This feature will be supported with high priority by the community and long-term support will be guaranteed.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8.4 Feature Stage

- 261/324 - 2025 Kube-OVN Team

8.4.2 Feature Stage List

This list records the feature stages from the 1.8 release.

8.4.2 Feature Stage List

- 262/324 - 2025 Kube-OVN Team

Feature Default Stage Since Until

Namespaced Subnet true GA 1.8

Distributed Gateway true GA 1.8

Active-backup Centralized Gateway true GA 1.8

ECMP Centralized Gateway false Beta 1.8

Subnet ACL true Alpha 1.9

Subnet Isolation (Will be replaced by

ACL later)

true Beta 1.8

Underlay Subnet true GA 1.8

Multiple Pod Interface true Beta 1.8

Subnet DHCP false Alpha 1.10

Subnet with External Gateway false Alpha 1.8

Cluster Inter-Connection with OVN-

IC

false Beta 1.8

Cluster Inter-Connection with

Submariner

false Alpha 1.9

VIP Reservation true Alpha 1.10

Create Custom VPC true Beta 1.8

Custom VPC Floating IP/SNAT/DNAT true Alpha 1.10

Custom VPC Static Route true Alpha 1.10

Custom VPC Policy Route true Alpha 1.10

Custom VPC Security Group true Alpha 1.10

Container Bandwidth QoS true GA 1.8

linux-netem QoS true Alpha 1.9

Prometheus Integration false GA 1.8

Grafana Integration false GA 1.8

IPv4/v6 DualStack false GA 1.8

Default VPC EIP/SNAT false Beta 1.8

Traffic Mirroring false GA 1.8

NetworkPolicy true Beta 1.8

Webhook false Alpha 1.10

Performance Tuning false Beta 1.8

Interconnection with Routes in

Overlay Mode

false Alpha 1.8

BGP Support false Alpha 1.9

Cilium Integration false Alpha 1.10

Custom VPC Peering false Alpha 1.10

8.4.2 Feature Stage List

- 263/324 - 2025 Kube-OVN Team

 PDF Slack Support

July 30, 2025

September 6, 2022

GitHub

8.4.3 Comments

Feature Default Stage Since Until

Mellanox Offload false Alpha 1.8

Corigine Offload false Alpha 1.10

Windows Support false Alpha 1.10

DPDK Support false Alpha 1.10

OpenStack Integration false Alpha 1.9

Single Pod Fixed IP/Mac true GA 1.8

Workload with Fixed IP true GA 1.8

StatefulSet with Fixed IP true GA 1.8

VM with Fixed IP false Beta 1.9

Load Balancer Type Service in

Default VPC

false Alpha 1.11

Load Balance in Custom VPC false Alpha 1.11

DNS in Custom VPC false Alpha 1.11

Underlay and Overlay

Interconnection

false Beta 1.12

VPC Egress Gateway true Alpha 1.14

8.4.3 Comments

- 264/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/bobz965
https://github.com/bobz965
https://github.com/oilbeater
https://github.com/oilbeater

8.5 Underlay Traffic Topology

This document describes the forwarding path of traffic in Underlay mode under different scenarios.

8.5.1 Pods in Same Node and Same Subnet

Internal logical switches exchange packets directly, without access to the external network.

8.5.2 Pods in Different Nodes and Same Subnet

Packets enter the physic switch via the node NIC and are exchanged by the physic switch.

8.5 Underlay Traffic Topology

- 265/324 - 2025 Kube-OVN Team

8.5.3 Pods in Same Node and Different Subnets

Packets enter the physic network via the node NIC and are exchanged and routed and forwarded by physic switches and routers.

Here br-provider-1 and br-provider-2 can be the same OVS bridge,multiple subnet can share a Provider Network.

8.5.3 Pods in Same Node and Different Subnets

- 266/324 - 2025 Kube-OVN Team

8.5.4 Pods in Different Nodes and Different Subnets

Packets enter the physic network via the node NIC and are exchanged and routed and forwarded by physic switches and routers.

8.5.5 Access to External

Packets enter the physic network via the node NIC and are exchanged and routed and forwarded by physic switches and routers.

8.5.4 Pods in Different Nodes and Different Subnets

- 267/324 - 2025 Kube-OVN Team

The communication between nodes and Pods follows the same logic.

8.5.6 Overview without Vlan Tag

8.5.6 Overview without Vlan Tag

- 268/324 - 2025 Kube-OVN Team

8.5.7 Overview with Vlan Tag

8.5.8 Pod visit Service IP

Kube-OVN configures load balancing for each Kubernetes Service on a logical switch on each subnet. When a Pod accesses other

Pods by accessing the Service IP, a network packet is constructed with the Service IP as the destination address and the MAC

address of the gateway as the destination MAC address. After the network packet enters the logical switch, load balancing will

intercept and DNAT the network packet to modify the destination IP and port to the IP and port of one of the Endpoint

corresponding to the Service. Since the logical switch does not modify the Layer 2 destination MAC address of the network

packet, the network packet will still be delivered to the physic gateway after entering the physic switch, and the physic gateway

will be required to forward the network packet.

8.5.7 Overview with Vlan Tag

- 269/324 - 2025 Kube-OVN Team

Service Backend is the Same Node and Same Subnet Pod

Service Backend is the Same Node and Different Subnets Pod

 PDF Slack Support

8.5.8 Pod visit Service IP

- 270/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 30, 2025

May 20, 2022

GitHub

8.5.9 Comments

8.5.9 Comments

- 271/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

8.6 Iptables Rules

Kube-OVN uses ipset and iptables to implement gateway NAT functionality in the default VPC overlay Subnets.

The ipset used is shown in the following table:

Name(IPv4/IPv6) Type Usage

ovn40services/ovn60services hash:net Service CIDR

ovn40subnets/ovn60subnets hash:net Overlay Subnet CIDR and NodeLocal DNS IP

address

ovn40subnets-nat/ovn60subnets-nat hash:net Overlay Subnet CIDRs that enable NatOutgoing

ovn40subnets-distributed-gw/ovn60subnets-

distributed-gw

hash:net Overlay Subnet CIDRs that use distributed

gateway

ovn40other-node/ovn60other-node hash:net Internal IP addresses for other Nodes

ovn40local-pod-ip-nat/ovn60local-pod-ip-nat hash:ip Deprecated

ovn40subnets-nat-policy hash:net All subnet cidrs configured with

natOutgoingPolicyRules

ovn40natpr-418e79269dc5-dst hash:net The dstIPs corresponding to the rule in

natOutgoingPolicyRules

ovn40natpr-418e79269dc5-src hash:net The srcIPs corresponding to the rule in

natOutgoingPolicyRules

8.6 Iptables Rules

- 272/324 - 2025 Kube-OVN Team

The iptables rules (IPv4) used are shown in the following table:

8.6 Iptables Rules

- 273/324 - 2025 Kube-OVN Team

Table Chain Rule Usage Note

filter INPUT -m set --match-set

ovn40services src -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter INPUT -m set --match-set

ovn40services dst -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter INPUT -m set --match-set

ovn40subnets src -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter INPUT -m set --match-set

ovn40subnets dst -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter FORWARD -m set --match-set

ovn40services src -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter FORWARD -m set --match-set

ovn40services dst -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter FORWARD -m set --match-set

ovn40subnets src -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter FORWARD -m set --match-set

ovn40subnets dst -j

ACCEPT

Allow k8s service and

pod traffic to pass

through

--

filter FORWARD -s 10.16.0.0/16 -m

comment --comment "ovn-

subnet-gateway,ovn-

default"

Used to count packets

from the subnet to the

external network

"10.16.0.0/16" is the cidr of the subnet, the

"ovn-subnet-gateway" before the "," in

comment is used to identify the iptables rule

used to count the subnet inbound and

outbound gateway packets, and the "ovn-

default" after the "," is the name of the

subnet

filter FORWARD -d 10.16.0.0/16 -m

comment --comment "ovn-

subnet-gateway,ovn-

default"

Used to count packets

from the external

network accessing the

subnet

"10.16.0.0/16" is the cidr of the subnet, the

"ovn-subnet-gateway" before the "," in

comment is used to identify the iptables rule

used to count the subnet inbound and

outbound gateway packets, and the "ovn-

default" after the "," is the name of the

subnet

filter OUTPUT -p udp -m udp --dport 6081

-j MARK --set-xmark 0x0

Clear traffic tag to

prevent SNAT

UDP: bad checksum on VXLAN interface

nat PREROUTING -m comment --comment

"kube-ovn prerouting

rules" -j OVN-

PREROUTING

Enter OVN-

PREROUTING chain

processing

--

nat POSTROUTING -m comment --comment

"kube-ovn postrouting

rules" -j OVN-

POSTROUTING

Enter OVN-

POSTROUTING chain

processing

--

8.6 Iptables Rules

- 274/324 - 2025 Kube-OVN Team

https://github.com/flannel-io/flannel/issues/1279

Table Chain Rule Usage Note

nat OVN-

PREROUTING

-i ovn0 -m set --match-set

ovn40subnets src -m set --

match-set ovn40services

dst -j MARK --set-xmark

0x4000/0x4000

Adding masquerade

tags to Pod access

service traffic

Used when the built-in LB is turned off

nat OVN-

PREROUTING

-p tcp -m addrtype --dst-

type LOCAL -m set --

match-set KUBE-NODE-

PORT-LOCAL-TCP dst -j

MARK --set-xmark

0x80000/0x80000

Add specific tags to

ExternalTrafficPolicy

for Local's Service

traffic (TCP)

Only used when kube-proxy is using ipvs

mode

nat OVN-

PREROUTING

-p udp -m addrtype --dst-

type LOCAL -m set --

match-set KUBE-NODE-

PORT-LOCAL-UDP dst -j

MARK --set-xmark

0x80000/0x80000

Add specific tags to

ExternalTrafficPolicy

for Local's Service

traffic (UDP)

Only used when kube-proxy is using ipvs

mode

nat OVN-

POSTROUTING

-m set --match-set

ovn40services src -m set --

match-set ovn40subnets

dst -m mark --mark

0x4000/0x4000 -j SNAT --

to-source

Use node IP as the

source address for

access from node to

overlay Pods via service

IP.

Works only when kube-proxy is using ipvs

mode

nat OVN-

POSTROUTING

-m mark --mark

0x4000/0x4000 -j

MASQUERADE

Perform SNAT for

specific tagged traffic

--

nat OVN-

POSTROUTING

-m set --match-set

ovn40subnets src -m set --

match-set ovn40subnets

dst -j MASQUERADE

Perform SNAT for

Service traffic between

Pods passing through

the node

--

nat OVN-

POSTROUTING

-m mark --mark

0x80000/0x80000 -m set --

match-set ovn40subnets-

distributed-gw dst -j

RETURN

For Service traffic

where

ExternalTrafficPolicy is

Local, if the Endpoint

uses a distributed

gateway, SNAT is not

required.

--

nat OVN-

POSTROUTING

-m mark --mark

0x80000/0x80000 -j

MASQUERADE

For Service traffic

where

ExternalTrafficPolicy is

Local, if the Endpoint

uses a centralized

gateway, SNAT is

required.

--

nat OVN-

POSTROUTING

-p tcp -m tcp --tcp-flags

SYN NONE -m conntrack --

ctstate NEW -j RETURN

No SNAT is performed

when the Pod IP is

exposed to the outside

world

--

nat OVN-

POSTROUTING

-s 10.16.0.0/16 -m set ! --

match-set ovn40subnets

When the Pod accesses

the network outside the

cluster, if the subnet is

10.16.0.0/16 is the Subnet CIDR,

192.168.0.101 is the specified IP of gateway

node

8.6 Iptables Rules

- 275/324 - 2025 Kube-OVN Team

Table Chain Rule Usage Note

dst -j SNAT --to-source

192.168.0.101

NatOutgoing and a

centralized gateway

with the specified IP is

used, perform SNAT

nat OVN-

POSTROUTING

-m set --match-set

ovn40subnets-nat src -m

set ! --match-set

ovn40subnets dst -j

MASQUERADE

When the Pod accesses

the network outside the

cluster, if NatOutgoing

is enabled on the

subnet, perform SNAT

--

nat OVN-

POSTROUTING

-m set --match-set

ovn40subnets-nat-policy

src -m set ! --match-set

ovn40subnets dst -j OVN-

NAT-POLICY

When Pod accesses the

network outside the

cluster, if

natOutgoingPolicyRules

is enabled on the

subnet, the packet with

the specified policy will

perform SNAT

ovn40subnets-nat-policy is all subnet

segments configured with

natOutgoingPolicyRules

nat OVN-

POSTROUTING

-m mark --mark

0x90001/0x90001 -j

MASQUERADE --random-

fully

When Pod accesses the

network outside the

cluster, if

natOutgoingPolicyRules

is enabled on the

subnet, the packet with

the specified policy will

perform SNAT

After coming out of OVN-NAT-POLICY, if it is

tagged with 0x90001/0x90001, it will do

SNAT

nat OVN-

POSTROUTING

-m mark --mark

0x90002/0x90002 -j

RETURN

When Pod accesses the

network outside the

cluster, if

natOutgoingPolicyRules

is enabled on the

subnet, the packet with

the specified policy will

perform SNAT

After coming out of OVN-NAT-POLICY, if it is

tagged with 0x90002/0x90002, it will not do

SNAT

nat OVN-NAT-

POLICY

-s 10.0.11.0/24 -m

comment --comment

natPolicySubnet-net1 -j

OVN-NAT-PSUBNET-

aa98851157c5

When Pod accesses the

network outside the

cluster, if

natOutgoingPolicyRules

is enabled on the

subnet, the packet with

the specified policy will

perform SNAT

10.0.11.0/24 represents the CIDR of the

subnet net1, and the rules under the OVN-

NAT-PSUBNET-aa98851157c5 chain

correspond to the natOutgoingPolicyRules

configuration of this subnet

nat OVN-NAT-

PSUBNET-

xxxxxxxxxxxx

-m set --match-set

ovn40natpr-418e79269dc5-

src src -m set --match-set

ovn40natpr-418e79269dc5-

dst dst -j MARK --set-xmark

0x90002/0x90002

When Pod accesses the

network outside the

cluster, if

natOutgoingPolicyRules

is enabled on the

subnet, the packet with

the specified policy will

perform SNAT

418e79269dc5 indicates the ID of a rule in

natOutgoingPolicyRules, which can be

viewed through

status.natOutgoingPolicyRules[index].RuleID,

indicating that srcIPs meets

ovn40natpr-418e79269dc5-src, and dstIPS

meets ovn40natpr-418e79269dc5- dst will be

marked with tag 0x90002

mangle OVN-OUTPUT -d 10.241.39.2/32 -p tcp -m

tcp --dport 80 -j MARK --

set-xmark

0x90003/0x90003

Introduce kubelet's

detection traffic to

tproxy with a specific

mark

8.6 Iptables Rules

- 276/324 - 2025 Kube-OVN Team

 PDF Slack Support

July 30, 2025

September 6, 2022

GitHub

8.6.1 Comments

Table Chain Rule Usage Note

mangle OVN-

PREROUTING

-d 10.241.39.2/32 -p tcp -m

tcp --dport 80 -j TPROXY --

on-port 8102 --on-ip

172.18.0.3 --tproxy-mark

0x90004/0x90004

Introduce kubelet's

detection traffic to

tproxy with a specific

mark

8.6.1 Comments

- 277/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/changluyi
https://github.com/changluyi
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/zhangzujian
https://github.com/zhangzujian

8.7 Kube-OVN-Pinger args Reference

Based on the Kube-OVN v1.12.0 version, We have compiled the parameters supported by Kube-ovn-pinger, and listed the value

types, meanings, and default values of each field defined by the parameters for reference

8.7 Kube-OVN-Pinger args Reference

- 278/324 - 2025 Kube-OVN Team

8.7.1 Args Describeption

8.7.1 Args Describeption

- 279/324 - 2025 Kube-OVN Team

Arg Name Type Description Default Value

port Int metrics port 8080

kubeconfig String Path to kubeconfig file with

authorization and master

location information. If not set

use the inCluster token.

""

ds-namespace String kube-ovn-pinger daemonset

namespace

"kube-system"

ds-name String kube-ovn-pinger daemonset

name

"kube-ovn-pinger"

interval Int interval seconds between

consecutive pings

5

mode String server or job Mode "server"

exit-code Int exit code when failure happens 0

internal-dns String check dns from pod "kubernetes.default"

external-dns String check external dns resolve

from pod

""

external-address String check ping connection to an

external address

"114.114.114.114"

network-mode String The cni plugin current cluster

used

"kube-ovn"

enable-metrics Bool Whether to support metrics

query

true

ovs.timeout Int Timeout on JSON-RPC

requests to OVS.

2

system.run.dir String OVS default run directory. "/var/run/openvswitch"

database.vswitch.name String The name of OVS db. "Open_vSwitch"

database.vswitch.socket.remote String JSON-RPC unix socket to OVS

db.

"unix:/var/run/

openvswitch/db.sock"

database.vswitch.file.data.path String OVS db file. "/etc/openvswitch/

conf.db"

database.vswitch.file.log.path String OVS db log file. "/var/log/openvswitch/

ovsdb-server.log"

database.vswitch.file.pid.path String OVS db process id file. "/var/run/openvswitch/

ovsdb-server.pid"

database.vswitch.file.system.id.path String OVS system id file. "/etc/openvswitch/

system-id.conf"

service.vswitchd.file.log.path String OVS vswitchd daemon log file. "/var/log/openvswitch/

ovs-vswitchd.log"

service.vswitchd.file.pid.path String OVS vswitchd daemon process

id file.

"/var/run/openvswitch/

ovs-vswitchd.pid"

service.ovncontroller.file.log.path String OVN controller daemon log

file.

"/var/log/ovn/ovn-

controller.log"

8.7.1 Args Describeption

- 280/324 - 2025 Kube-OVN Team

 PDF Slack Support

February 23, 2023

February 23, 2023

GitHub

8.7.2 Comments

Arg Name Type Description Default Value

service.ovncontroller.file.pid.path String OVN controller daemon

process id file.

"/var/run/ovn/ovn-

controller.pid"

8.7.2 Comments

- 281/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/changluyi
https://github.com/changluyi

8.8 Development and Contribution Guide

8.8.1 Contribution Process

Kube-OVN does not have a complex contribution process—all work happens on GitHub. If you want to submit a new feature or fix

a bug, simply create an Issue and Pull Request (PR) on GitHub. After maintainers review and all GitHub Actions pass, the code

will be merged.

8.8.2 Environmental Preparation

Kube-OVN uses Golang to develop and Go Modules to manage dependency, please check env GO111MODULE="on" .

golangci-lint is used to scan code for compliance issues. It needs to be installed in the development environment. Please refer to

local-installation.

To reduce the size of the final generated image, Kube-OVN uses some of the Docker buildx experimental features, please update

Docker to the latest version and enable buildx:

8.8.3 Build Image

Use the following command to download the code and generate the image required to run Kube-OVN:

To build an image to run in an ARM environment, run the following command:

8.8.4 Building the Base Image

If you need to change the operating system version, dependencies, OVS/OVN code, etc., you need to rebuild the base image.

The Dockerfile used for the base image is dist/images/Dockerfile.base .

Build instructions:

8.8.5 Run E2E

Kube-OVN uses:

KIND to build local Kubernetes cluster: go install sigs.k8s.io/kind@latest

jinjanator to render templates: pip install jinjanator

Ginkgo to run test cases: go install github.com/onsi/ginkgo/v2/ginkgo; go get github.com/onsi/gomega/...

Please refer to the relevant documentation for dependency installation.

Run E2E locally:

docker buildx create --use

git clone https://github.com/kubeovn/kube-ovn.git
cd kube-ovn
make release

make release-arm

build x86 base image
make base-amd64

build arm base image
make base-arm64

•

•

•

8.8 Development and Contribution Guide

- 282/324 - 2025 Kube-OVN Team

https://golang.org/
https://github.com/golang/go/wiki/Modules
https://golangci-lint.run
https://golangci-lint.run/welcome/install/#local-installation
https://kind.sigs.k8s.io/
https://github.com/kpfleming/jinjanator
https://onsi.github.io/ginkgo/

To run the Underlay E2E test, run the following commands:

To run the ovn vpc nat gw eip, fip, snat, dnat E2E test, run the following commands:

To run the iptables vpc nat gw eip, fip, snat, dnat E2E test, run the following commands:

To run the loadbalancer service E2E test, run the following commands:

To clean, run the following commands:

 PDF Slack Support

July 30, 2025

May 20, 2022

GitHub

8.8.6 Comments

make kind-init
make kind-install
make e2e

make kind-init
make kind-install-underlay
make e2e-underlay-single-nic

make kind-init
make kind-install
make ovn-vpc-nat-gw-conformance-e2e

make kind-init
make kind-install
make iptables-vpc-nat-gw-conformance-e2e

make kind-init
make kind-install
make kube-ovn-lb-svc-conformance-e2e

make kind-clean

8.8.6 Comments

- 283/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/qiutingjun
https://github.com/qiutingjun
https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/bobz965
https://github.com/bobz965

8.9 OVS/OVN Customization

Upstream OVN/OVS was originally designed with the goal of a general purpose SDN controller and data plane. Due to some

specific usage of the Kubernetes network,Kube-OVN only focused on part of the features. In order to achieve better performance,

stability and specific features, Kube-OVN has made some modifications to the upstream OVN/OVS. Users using their own OVN/

OVS with Kube-OVN controllers need to be aware of the possible impact of the following changes:

Did not merge into the upstream modification.

38df6fa3f7 Adjust the election timer to avoid large-scale cluster election jitter.

d4888c4e75 add fdb update logging.

d4888c4e75 fdb: fix mac learning in environments with hairpin enabled.

9a81b91368 ovsdb-tool: add optional server id parameter for "join-cluster" command.

0700cb90f9 Destination non-service traffic bypasses conntrack to improve performance on a particular data path.

c48049a64f ECMP algorithm is adjusted from dp_hash to hash to avoid the hash error problem in some kernels.

64383c14a9 Fix kernel Crash issue under Windows.

08a95db2ca Support for github action builds on Windows.

680e77a190 Windows uses tcp listening by default.

05e57b3227 add support for windows.

0181b68be1 br-int controller: listen on 127.0.0.1:6653 by default.

b3801ecb73 modify src route priority.

977e569539 fix reaching resubmit limit in underlay.

45a4a22161 ovn-nbctl: do not remove LB if vips is empty.

540592b9ff Replaces the Mac address as the destination address after DNAT to reduce additional performance overhead.

10972d9632 Fix vswitchd ofport_usage memory leak.

Merged into upstream modification:

20626ea909 Multicast traffic bypasses LB and ACL processing stages to improve specific data path performance.

a2d9ff3ccd Deb build adds compile optimization options.

 PDF Slack Support

February 16, 2023

May 24, 2022

GitHub

8.9.1 Comments

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8.9 OVS/OVN Customization

- 284/324 - 2025 Kube-OVN Team

https://github.com/kubeovn/ovs/commit/38df6fa3f721dc53464fcff61dbc2bc79c710ab1
https://github.com/kubeovn/ovs/commit/d4888c4e75f2288d8ff4f04ee57538659f118f5b
https://github.com/kubeovn/ovs/commit/403fbd0f6561c8985302734608c2de659671c563
https://github.com/kubeovn/ovs/commit/9a81b91368b27afda97657a8864b729dc2e029e2
https://github.com/kubeovn/ovn/commit/0700cb90f950db1fb43490545dd4fc41afa46d70
https://github.com/kubeovn/ovn/commit/c48049a64fedb1278f9158770a12751ee5bfc358
https://github.com/kubeovn/ovs/commit/64383c14a9c25e9e0ca53c6758d9499c60132536
https://github.com/kubeovn/ovs/commit/08a95db2ca506fce4d89fdf4fafab74607b2bb9f
https://github.com/kubeovn/ovs/commit/680e77a190ae7df3086bc35bb6150238e97f9020
https://github.com/kubeovn/ovn/commit/05e57b322758461c54d5cad030486c3d25942c73
https://github.com/kubeovn/ovn/commit/0181b68be18e96bc4ca68a0c3e5082da34c9dcdd
https://github.com/kubeovn/ovs/commit/b3801ecb732a788efd2380a7daca4e2a7726128e
https://github.com/kubeovn/ovs/commit/977e569539893460cd27b2287d6042b62079ea65
https://github.com/kubeovn/ovn/commit/45a4a22161e42f17f21baee9106a45964dfd3a1b
https://github.com/kubeovn/ovn/commit/540592b9fff8c5574ae605086fdaa16b718551f7
https://github.com/kubeovn/ovs/commit/10972d963208490c5fe6ff66247b86b947136da6
https://github.com/ovn-org/ovn/commit/20626ea9097020194fa558865ee8d64ba9ca0816
https://github.com/ovn-org/ovn/commit/a2d9ff3ccd4e12735436b0578ce0020cb62f2c27
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/zhangzujian
https://github.com/zhangzujian
https://github.com/oilbeater
https://github.com/oilbeater

8.10 Tunnel Protocol Selection

Kube-OVN uses OVN/OVS as the data plane implementation and currently supports Geneve , Vxlan and STT tunnel encapsulation

protocols. These three protocols differ in terms of functionality, performance and ease of use. This document will describe the

differences in the use of the three protocols so that users can choose according to their situation. OVN Architecture Design

Decision can be referenced for the differences in design among these three protocols in OVN.

8.10.1 Geneve

The Geneve protocol is the default tunneling protocol selected during Kube-OVN deployment and is also the default

recommended tunneling protocol for OVN. This protocol is widely supported in the kernel and can be accelerated using the

generic offload capability of modern NICs. Since Geneve has a variable header, it is possible to use 24bit space to mark different

datapaths users can create a larger number of virtual networks and a single datapath can support 32767 ports.

If you are using Mellanox or Corigine SmartNIC OVS offload, Geneve requires a higher kernel version. Upstream kernel of 5.4 or

higher, or other compatible kernels that backports this feature.

Due to the use of UDP encapsulation, this protocol does not make good use of the TCP-related offloads of modern NICs when

handling TCP over UDP, and consumes more CPU resources when handling large packets.

8.10.2 Vxlan

Vxlan is a recently supported protocol in the upstream OVN, which is widely supported in the kernel and can be accelerated

using the common offload capabilities of modern NICs. Due to the limited length of the protocol header and the additional space

required for OVN orchestration, there is a limit to the number of datapaths that can be created, with a maximum of 4096

datapaths and a maximum of 4096 ports under each datapath. Also, inport -based ACLs are not supported due to header length

limitations.

Vxlan offloading is supported in common kernels if using Mellanox or Corigine SmartNIC.

Due to the use of UDP encapsulation, this protocol does not make good use of the TCP-related offloads of modern NICs when

handling TCP over UDP, and consumes more CPU resources when handling large packets.

8.10.3 STT

The STT protocol is an early tunneling protocol supported by the OVN that uses TCP-like headers to take advantage of the TCP

offload capabilities common to modern NICs and significantly increase TCP throughput. The protocol also has a long header to

support full OVN capabilities and large-scale datapaths.

This protocol is not supported in the kernel. To use it, you need to compile an additional OVS kernel module and recompile the

new version of the kernel module when upgrading the kernel.

This protocol is not currently supported by the SmartNic and cannot use the offloading capability of OVS offloading.

8.10.4 References

VXLAN vs GENEVE: Understand The Difference

OVN FAQ

What is Geneve

 PDF Slack Support

•

•

•

8.10 Tunnel Protocol Selection

- 285/324 - 2025 Kube-OVN Team

https://www.man7.org/linux/man-pages/man7/ovn-architecture.7.html#DESIGN_DECISIONS
https://www.man7.org/linux/man-pages/man7/ovn-architecture.7.html#DESIGN_DECISIONS
https://ipwithease.com/vxlan-vs-geneve-understand-the-difference/
https://docs.ovn.org/en/latest/faq/general.html
https://www.redhat.com/en/blog/what-geneve
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn

July 15, 2025

June 17, 2022

GitHub

8.10.5 Comments

8.10.5 Comments

- 286/324 - 2025 Kube-OVN Team

https://github.com/oilbeater
https://github.com/oilbeater

8.11 Metrics

This document lists all the monitoring metrics provided by Kube-OVN.

8.11 Metrics

- 287/324 - 2025 Kube-OVN Team

8.11.1 ovn-monitor

OVN status metrics:

8.11.1 ovn-monitor

- 288/324 - 2025 Kube-OVN Team

Type Metric Description

Gauge kube_ovn_ovn_status OVN Health Status. The values are: (2) for

standby or follower, (1) for active or leader, (0)

for unhealthy.

Gauge kube_ovn_failed_req_count The number of failed requests to OVN stack.

Gauge kube_ovn_log_file_size The size of a log file associated with an OVN

component.

Gauge kube_ovn_db_file_size The size of a database file associated with an

OVN component.

Gauge kube_ovn_chassis_info Whether the OVN chassis is up (1) or down

(0), together with additional information about

the chassis.

Gauge kube_ovn_db_status The status of OVN NB/SB DB, (1) for healthy,

(0) for unhealthy.

Gauge kube_ovn_logical_switch_info The information about OVN logical switch.

This metric is always up (1).

Gauge kube_ovn_logical_switch_external_id Provides the external IDs and values

associated with OVN logical switches. This

metric is always up (1).

Gauge kube_ovn_logical_switch_port_binding Provides the association between a logical

switch and a logical switch port. This metric is

always up (1).

Gauge kube_ovn_logical_switch_tunnel_key The value of the tunnel key associated with

the logical switch.

Gauge kube_ovn_logical_switch_ports_num The number of logical switch ports connected

to the OVN logical switch.

Gauge kube_ovn_logical_switch_port_info The information about OVN logical switch

port. This metric is always up (1).

Gauge kube_ovn_logical_switch_port_tunnel_key The value of the tunnel key associated with

the logical switch port.

Gauge kube_ovn_cluster_enabled Is OVN clustering enabled (1) or not (0).

Gauge kube_ovn_cluster_role A metric with a constant '1' value labeled by

server role.

Gauge kube_ovn_cluster_status A metric with a constant '1' value labeled by

server status.

Gauge kube_ovn_cluster_term The current raft term known by this server.

Gauge kube_ovn_cluster_leader_self Is this server consider itself a leader (1) or not

(0).

Gauge kube_ovn_cluster_vote_self Is this server voted itself as a leader (1) or not

(0).

Gauge kube_ovn_cluster_election_timer The current election timer value.

Gauge kube_ovn_cluster_log_not_committed The number of log entries not yet committed

by this server.

Gauge kube_ovn_cluster_log_not_applied

8.11.1 ovn-monitor

- 289/324 - 2025 Kube-OVN Team

Type Metric Description

The number of log entries not yet applied by

this server.

Gauge kube_ovn_cluster_log_index_start The log entry index start value associated with

this server.

Gauge kube_ovn_cluster_log_index_next The log entry index next value associated with

this server.

Gauge kube_ovn_cluster_inbound_connections_total The total number of inbound connections to

the server.

Gauge kube_ovn_cluster_outbound_connections_total The total number of outbound connections

from the server.

Gauge kube_ovn_cluster_inbound_connections_error_total The total number of failed inbound

connections to the server.

Gauge kube_ovn_cluster_outbound_connections_error_total The total number of failed outbound

connections from the server.

8.11.1 ovn-monitor

- 290/324 - 2025 Kube-OVN Team

8.11.2 ovs-monitor

ovsdb and vswitchd status metrics:

8.11.2 ovs-monitor

- 291/324 - 2025 Kube-OVN Team

Type Metric Description

Gauge ovs_status OVS Health Status. The values are: health(1), unhealthy(0).

Gauge ovs_info This metric provides basic information about OVS. It is always set to 1.

Gauge failed_req_count The number of failed requests to OVS stack.

Gauge log_file_size The size of a log file associated with an OVS component.

Gauge db_file_size The size of a database file associated with an OVS component.

Gauge datapath Represents an existing datapath. This metrics is always 1.

Gauge dp_total Represents total number of datapaths on the system.

Gauge dp_if Represents an existing datapath interface. This metrics is always 1.

Gauge dp_if_total Represents the number of ports connected to the datapath.

Gauge dp_flows_total The number of flows in a datapath.

Gauge dp_flows_lookup_hit The number of incoming packets in a datapath matching existing flows in

the datapath.

Gauge dp_flows_lookup_missed The number of incoming packets in a datapath not matching any existing

flow in the datapath.

Gauge dp_flows_lookup_lost The number of incoming packets in a datapath destined for userspace

process but subsequently dropped before reaching userspace.

Gauge dp_masks_hit The total number of masks visited for matching incoming packets.

Gauge dp_masks_total The number of masks in a datapath.

Gauge dp_masks_hit_ratio The average number of masks visited per packet. It is the ration between

hit and total number of packets processed by a datapath.

Gauge interface Represents OVS interface. This is the primary metric for all other

interface metrics. This metrics is always 1.

Gauge interface_admin_state The administrative state of the physical network link of OVS interface. The

values are: down(0), up(1), other(2).

Gauge interface_link_state The state of the physical network link of OVS interface. The values are:

down(0), up(1), other(2).

Gauge interface_mac_in_use The MAC address in use by OVS interface.

Gauge interface_mtu The currently configured MTU for OVS interface.

Gauge interface_of_port Represents the OpenFlow port ID associated with OVS interface.

Gauge interface_if_index Represents the interface index associated with OVS interface.

Gauge interface_tx_packets Represents the number of transmitted packets by OVS interface.

Gauge interface_tx_bytes Represents the number of transmitted bytes by OVS interface.

Gauge interface_rx_packets Represents the number of received packets by OVS interface.

Gauge interface_rx_bytes Represents the number of received bytes by OVS interface.

Gauge interface_rx_crc_err Represents the number of CRC errors for the packets received by OVS

interface.

Gauge interface_rx_dropped Represents the number of input packets dropped by OVS interface.

Gauge interface_rx_errors

8.11.2 ovs-monitor

- 292/324 - 2025 Kube-OVN Team

Type Metric Description

Represents the total number of packets with errors received by OVS

interface.

Gauge interface_rx_frame_err Represents the number of frame alignment errors on the packets received

by OVS interface.

Gauge interface_rx_missed_err Represents the number of packets with RX missed received by OVS

interface.

Gauge interface_rx_over_err Represents the number of packets with RX overrun received by OVS

interface.

Gauge interface_tx_dropped Represents the number of output packets dropped by OVS interface.

Gauge interface_tx_errors Represents the total number of transmit errors by OVS interface.

Gauge interface_collisions Represents the number of collisions on OVS interface.

8.11.2 ovs-monitor

- 293/324 - 2025 Kube-OVN Team

8.11.3 kube-ovn-pinger

Network quality related metrics:

Type Metric Description

Gauge pinger_ovs_up If the ovs on the node is up

Gauge pinger_ovs_down If the ovs on the node is down

Gauge pinger_ovn_controller_up If the ovn_controller on the node is up

Gauge pinger_ovn_controller_down If the ovn_controller on the node is down

Gauge pinger_inconsistent_port_binding The number of mismatch port bindings between ovs and ovn-sb

Gauge pinger_apiserver_healthy If the apiserver request is healthy on this node

Gauge pinger_apiserver_unhealthy If the apiserver request is unhealthy on this node

Histogram pinger_apiserver_latency_ms The latency ms histogram the node request apiserver

Gauge pinger_internal_dns_healthy If the internal dns request is unhealthy on this node

Gauge pinger_internal_dns_unhealthy If the internal dns request is unhealthy on this node

Histogram pinger_internal_dns_latency_ms The latency ms histogram the node request internal dns

Gauge pinger_external_dns_health If the external dns request is healthy on this node

Gauge pinger_external_dns_unhealthy If the external dns request is unhealthy on this node

Histogram pinger_external_dns_latency_ms The latency ms histogram the node request external dns

Histogram pinger_pod_ping_latency_ms The latency ms histogram for pod peer ping

Gauge pinger_pod_ping_lost_total The lost count for pod peer ping

Gauge pinger_pod_ping_count_total The total count for pod peer ping

Histogram pinger_node_ping_latency_ms The latency ms histogram for pod ping node

Gauge pinger_node_ping_lost_total The lost count for pod ping node

Gauge pinger_node_ping_count_total The total count for pod ping node

Histogram pinger_external_ping_latency_ms The latency ms histogram for pod ping external address

Gauge pinger_external_lost_total The lost count for pod ping external address

8.11.3 kube-ovn-pinger

- 294/324 - 2025 Kube-OVN Team

8.11.4 kube-ovn-controller

kube-ovn-controller status metrics:

Type Metric Description

Histogram rest_client_request_latency_seconds Request latency in seconds. Broken down by verb and URL

Counter rest_client_requests_total Number of HTTP requests, partitioned by status code,

method, and host

Counter lists_total Total number of API lists done by the reflectors

Summary list_duration_seconds How long an API list takes to return and decode for the

reflectors

Summary items_per_list How many items an API list returns to the reflectors

Counter watches_total Total number of API watches done by the reflectors

Counter short_watches_total Total number of short API watches done by the reflectors

Summary watch_duration_seconds How long an API watch takes to return and decode for the

reflectors

Summary items_per_watch How many items an API watch returns to the reflectors

Gauge last_resource_version Last resource version seen for the reflectors

Histogram ovs_client_request_latency_milliseconds The latency histogram for ovs request

Gauge subnet_available_ip_count The available num of ip address in subnet

Gauge subnet_used_ip_count The used num of ip address in subnet

8.11.4 kube-ovn-controller

- 295/324 - 2025 Kube-OVN Team

8.11.5 kube-ovn-cni

kube-ovn-cni status metrics:

 PDF Slack Support

July 30, 2025

June 21, 2022

GitHub

8.11.6 Comments

Type Metric Description

Histogram cni_op_latency_seconds The latency seconds for cni operations

Counter cni_wait_address_seconds_total Latency that cni wait controller to assign an address

Counter cni_wait_connectivity_seconds_total Latency that cni wait address ready in overlay network

Counter cni_wait_route_seconds_total Latency that cni wait controller to add routed annotation

to pod

Histogram rest_client_request_latency_seconds Request latency in seconds. Broken down by verb and URL

Counter rest_client_requests_total Number of HTTP requests, partitioned by status code,

method, and host

Counter lists_total Total number of API lists done by the reflectors

Summary list_duration_seconds How long an API list takes to return and decode for the

reflectors

Summary items_per_list How many items an API list returns to the reflectors

Counter watches_total Total number of API watches done by the reflectors

Counter short_watches_total Total number of short API watches done by the reflectors

Summary watch_duration_seconds How long an API watch takes to return and decode for the

reflectors

Summary items_per_watch How many items an API watch returns to the reflectors

Gauge last_resource_version Last resource version seen for the reflectors

Histogram ovs_client_request_latency_milliseconds The latency histogram for ovs request

8.11.5 kube-ovn-cni

- 296/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

8.12 Kube-OVN API Reference

Based on Kube-OVN v1.12.0, we have compiled a list of CRD resources supported by Kube-OVN, listing the types and meanings

of each field of CRD definition for reference.

8.12.1 Generic Condition Definition

In each CRD definition, the Condition field in Status follows the above format, so we explain it in advance.

8.12.2 Subnet Definition

Subnet

Property Name Type Description

type String Type of status

status String The value of status, in the range of True , False or Unknown

reason String The reason for the status change

message String The specific message of the status change

lastUpdateTime Time The last time the status was updated

lastTransitionTime Time Time of last status type change

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have this

value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value Subnet

metadata ObjectMeta Standard Kubernetes resource metadata information

spec SubnetSpec Subnet specific configuration information

status SubnetStatus Subnet status information

8.12 Kube-OVN API Reference

- 297/324 - 2025 Kube-OVN Team

SUBNETSPEC

8.12.2 Subnet Definition

- 298/324 - 2025 Kube-OVN Team

Property Name Type Description

default Bool Whether this subnet is the default subnet

vpc String The vpc which the subnet belongs to, default is ovn-cluster

protocol String IP protocol, the value is in the range of IPv4 , IPv6 or Dual

namespaces []String The list of namespaces bound to this subnet

cidrBlock String The range of the subnet, e.g. 10.16.0.0/16

gateway String The gateway address of the subnet, the default value is the first available

address under the CIDRBlock of the subnet

excludeIps []String The range of addresses under this subnet that will not be automatically

assigned

provider String Default value is ovn . In the case of multiple NICs, the value is

<name>.<namespace> of the NetworkAttachmentDefinition, Kube-OVN will

use this information to find the corresponding subnet resource

gatewayType String The gateway type in overlay mode, either distributed or centralized

gatewayNode String The gateway node when the gateway mode is centralized, node names can

be comma-separated

natOutgoing Bool Whether the outgoing traffic is NAT

externalEgressGateway String The address of the external gateway. This parameter and the natOutgoing

parameter cannot be set at the same time

policyRoutingPriority Uint32 Policy route priority. Used to control the forwarding of traffic to the

external gateway address after the subnet gateway

policyRoutingTableID Uint32 The TableID of the local policy routing table, should be different for each

subnet to avoid conflicts

private Bool Whether the subnet is a private subnet, which denies access to addresses

inside the subnet if the subnet is private

allowSubnets []String If the subnet is a private subnet, the set of addresses that are allowed to

access the subnet

vlan String The name of vlan to which the subnet is bound

vips []String The virtual-ip parameter information for virtual type lsp on the subnet

logicalGateway Bool Whether to enable logical gateway

disableGatewayCheck Bool Whether to skip the gateway connectivity check when creating a pod

disableInterConnection Bool Whether to enable subnet interconnection across clusters

enableDHCP Bool Whether to configure dhcp configuration options for lsps belong this

subnet

dhcpV4Options String The DHCP_Options record associated with lsp dhcpv4_options on the

subnet

dhcpV6Options String The DHCP_Options record associated with lsp dhcpv6_options on the

subnet

enableIPv6RA Bool Whether to configure the ipv6_ra_configs parameter for the lrp port of the

router connected to the subnet

ipv6RAConfigs String

8.12.2 Subnet Definition

- 299/324 - 2025 Kube-OVN Team

Acl

SUBNETSTATUS

Property Name Type Description

The ipv6_ra_configs parameter configuration for the lrp port of the router

connected to the subnet

acls []Acl The acls record associated with the logical-switch of the subnet

u2oInterconnection Bool Whether to enable interconnection mode for Overlay/Underlay

enableLb *Bool Whether the logical-switch of the subnet is associated with load-balancer

records

enableEcmp Bool Centralized subnet, whether to enable ECMP routing

Property

Name

Type Description

direction String Restrict the direction of acl, which value is from-lport or to-lport

priority Int Acl priority, in the range 0 to 32767

match String Acl rule match expression

action String The action of the rule, which value is in the range of allow-related , allow-

stateless , allow , drop , reject

Property Name Type Description

conditions []SubnetCondition Subnet status change information, refer to the beginning of the document

for the definition of Condition

v4AvailableIPs Float64 Number of available IPv4 IPs

v4availableIPrange String The available range of IPv4 addresses on the subnet

v4UsingIPs Float64 Number of used IPv4 IPs

v4usingIPrange String Used IPv4 address ranges on the subnet

v6AvailableIPs Float64 Number of available IPv6 IPs

v6availableIPrange String The available range of IPv6 addresses on the subnet

v6UsingIPs Float64 Number of used IPv6 IPs

v6usingIPrange String Used IPv6 address ranges on the subnet

activateGateway String The currently working gateway node in centralized subnet of master-

backup mode

dhcpV4OptionsUUID String The DHCP_Options record identifier associated with the lsp

dhcpv4_options on the subnet

dhcpV6OptionsUUID String The DHCP_Options record identifier associated with the lsp

dhcpv6_options on the subnet

u2oInterconnectionIP String The IP address used for interconnection when Overlay/Underlay

interconnection mode is enabled

8.12.2 Subnet Definition

- 300/324 - 2025 Kube-OVN Team

8.12.3 IP Definition

IP

IPSEPC

8.12.4 Underlay configuration

Vlan

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource have the

value IP

metadata ObjectMeta Standard Kubernetes resource metadata information

spec IPSpec IP specific configuration information

Property Name Type Description

podName String Pod name which assigned with this IP

namespace String The name of the namespace where the pod is bound

subnet String The subnet which the ip belongs to

attachSubnets []String The name of the other subnets attached to this primary IP (field deprecated)

nodeName String The name of the node where the pod is bound

ipAddress String IP address, in v4IP,v6IP format for dual-stack cases

v4IPAddress String IPv4 IP address

v6IPAddress String IPv6 IP address

attachIPs []String Other IP addresses attached to this primary IP (field is deprecated)

macAddress String The Mac address of the bound pod

attachMacs []String Other Mac addresses attached to this primary IP (field deprecated)

containerID String The Container ID corresponding to the bound pod

podType String Special workload pod, can be StatefulSet , VirtualMachine or empty

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all instances of this resource will

be kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value Vlan

metadata ObjectMeta Standard Kubernetes resource metadata information

spec VlanSpec Vlan specific configuration information

status VlanStatus Vlan status information

8.12.3 IP Definition

- 301/324 - 2025 Kube-OVN Team

VLANSPEC

VLANSTATUS

ProviderNetwork

PROVIDERNETWORKSPEC

CustomInterface

Property Name Type Description

id Int Vlan tag number, in the range of 0~4096

provider String The name of the ProviderNetwork to which the vlan is bound

Property

Name

Type Description

subnets []String The list of subnets to which the vlan is bound

conditions []VlanCondition Vlan status change information, refer to the beginning of the document for the

definition of Condition

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will

have the value ProviderNetwork

metadata ObjectMeta Standard Kubernetes resource metadata information

spec ProviderNetworkSpec ProviderNetwork specific configuration information

status ProviderNetworkStatus ProviderNetwork status information

Property Name Type Description

defaultInterface String The name of the NIC interface used by default for this bridge network

customInterfaces []CustomInterface The special NIC configuration used by this bridge network

excludeNodes []String The names of the nodes that will not be bound to this bridge network

exchangeLinkName Bool Whether to exchange the bridge NIC and the corresponding OVS bridge

name

Property Name Type Description

interface String NIC interface name used for underlay

nodes []String List of nodes using the custom NIC interface

8.12.4 Underlay configuration

- 302/324 - 2025 Kube-OVN Team

PROVIDERNETWORKSTATUS

8.12.5 Vpc Definition

Vpc

VPCSPEC

StaticRoute

Property

Name

Type Description

ready Bool Whether the current bridge network is in the ready state

readyNodes []String The name of the node whose bridge network is ready

notReadyNodes []String The name of the node whose bridge network is not ready

vlans []String The name of the vlan to which the bridge network is bound

conditions []ProviderNetworkCondition ProviderNetwork status change information, refer to the beginning of

the document for the definition of Condition

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have this

value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value Vpc

metadata ObjectMeta Standard Kubernetes resource metadata information

spec VpcSpec Vpc specific configuration information

status VpcStatus Vpc status information

Property Name Type Description

namespaces []String List of namespaces bound by Vpc

staticRoutes []*StaticRoute The static route information configured under Vpc

policyRoutes []*PolicyRoute The policy route information configured under Vpc

vpcPeerings []*VpcPeering Vpc interconnection information

enableExternal Bool Whether vpc is connected to an external switch

defaultSubnet String Name of the subnet that should be used by custom Vpc as the default one

Property Name Type Description

policy String Routing policy, takes the value of policySrc or policyDst

cidr String Routing cidr value

nextHopIP String The next hop information of the route

8.12.5 Vpc Definition

- 303/324 - 2025 Kube-OVN Team

PolicyRoute

VpcPeering

VPCSTATUS

VpcNatGateway

Property

Name

Type Description

priority Int32 Priority for policy route

match String Match expression for policy route

action String Action for policy route, the value is in the range of allow , drop , reroute

nextHopIP String The next hop of the policy route, separated by commas in the case of ECMP

routing

Property Name Type Description

remoteVpc String Name of the interconnected peering vpc

localConnectIP String The local ip for vpc used to connect to peer vpc

Property Name Type Description

conditions []VpcCondition Vpc status change information, refer to the beginning of the

documentation for the definition of Condition

standby Bool Whether the vpc creation is complete, the subnet under the vpc needs to

wait for the vpc creation to complete other proceeding

default Bool Whether it is the default vpc

defaultLogicalSwitch String The default subnet under vpc

router String The logical-router name for the vpc

tcpLoadBalancer String TCP LB information for vpc

udpLoadBalancer String UDP LB information for vpc

tcpSessionLoadBalancer String TCP Session Hold LB Information for Vpc

udpSessionLoadBalancer String UDP session hold LB information for Vpc

subnets []String List of subnets for vpc

vpcPeerings []String List of peer vpcs for vpc interconnection

enableExternal Bool Whether the vpc is connected to an external switch

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value VpcNatGateway

metadata ObjectMeta Standard Kubernetes resource metadata information

spec VpcNatSpec Vpc gateway specific configuration information

8.12.5 Vpc Definition

- 304/324 - 2025 Kube-OVN Team

VPCNATSPEC

VpcNatToleration

The meaning of the above tolerance fields can be found in the official Kubernetes documentation Taint and Tolerance.

IptablesEIP

IPTABLESEIPSPEC

Property Name Type Description

vpc String Vpc name which the vpc gateway belongs to

subnet String The name of the subnet to which the gateway pod belongs

lanIp String The IP address assigned to the gateway pod

selector []String Standard Kubernetes selector match information

tolerations []VpcNatToleration Standard Kubernetes tolerance information

Property Name Type Description

key String The key information of the taint tolerance

operator String Takes the value of Exists or Equal

value String The value information of the taint tolerance

effect String The effect of the taint tolerance, takes the value of NoExecute , NoSchedule , or

PreferNoSchedule

tolerationSeconds Int64 The amount of time the pod can continue to run on the node after the taint is

added

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have this

value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource have the

value IptablesEIP

metadata ObjectMeta Standard Kubernetes resource metadata information

spec IptablesEipSpec IptablesEIP specific configuration information used by vpc gateway

status IptablesEipStatus IptablesEIP status information used by vpc gateway

Property Name Type Description

v4ip String IptablesEIP v4 address

v6ip String IptablesEIP v6 address

macAddress String The assigned mac address, not actually used

natGwDp String Vpc gateway name

8.12.5 Vpc Definition

- 305/324 - 2025 Kube-OVN Team

https://kubernetes.io/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/

IPTABLESEIPSTATUS

IptablesFIPRule

IPTABLESFIPRULESPEC

IPTABLESFIPRULESTATUS

Property

Name

Type Description

ready Bool Whether IptablesEIP is configured complete

ip String The IP address used by IptablesEIP, currently only IPv4 addresses are

supported

redo String IptablesEIP crd creation or update time

nat String The type of IptablesEIP, either fip , snat , or dnat

conditions []IptablesEIPCondition IptablesEIP status change information, refer to the beginning of the

documentation for the definition of Condition

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

this value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource have

the value IptablesFIPRule

metadata ObjectMeta Standard Kubernetes resource metadata information

spec IptablesFIPRuleSpec The IptablesFIPRule specific configuration information used by vpc

gateway

status IptablesFIPRuleStatus IptablesFIPRule status information used by vpc gateway

Property Name Type Description

eip String Name of the IptablesEIP used for IptablesFIPRule

internalIp String The corresponding internal IP address

Property

Name

Type Description

ready Bool Whether IptablesFIPRule is configured or not

v4ip String The v4 IP address used by IptablesEIP

v6ip String The v6 IP address used by IptablesEIP

natGwDp String Vpc gateway name

redo String IptablesFIPRule crd creation or update time

conditions []IptablesFIPRuleCondition IptablesFIPRule status change information, refer to the beginning of

the documentation for the definition of Condition

8.12.5 Vpc Definition

- 306/324 - 2025 Kube-OVN Team

IptablesSnatRule

IPTABLESSNATRULESPEC

IPTABLESSNATRULESTATUS

IptablesDnatRule

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

this value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource

have the value IptablesSnatRule

metadata ObjectMeta Standard Kubernetes resource metadata information

spec IptablesSnatRuleSpec The IptablesSnatRule specific configuration information used by the vpc

gateway

status IptablesSnatRuleStatus IptablesSnatRule status information used by vpc gateway

Property Name Type Description

eip String Name of the IptablesEIP used by IptablesSnatRule

internalIp String IptablesSnatRule's corresponding internal IP address

Property

Name

Type Description

ready Bool Whether the configuration is complete

v4ip String The v4 IP address used by IptablesSnatRule

v6ip String The v6 IP address used by IptablesSnatRule

natGwDp String Vpc gateway name

redo String IptablesSnatRule crd creation or update time

conditions []IptablesSnatRuleCondition IptablesSnatRule status change information, refer to the beginning of

the documentation for the definition of Condition

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

this value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource

have the value IptablesDnatRule

metadata ObjectMeta Standard Kubernetes resource metadata information

spec IptablesDnatRuleSpec The IptablesDnatRule specific configuration information used by vpc

gateway

status IptablesDnatRuleStatus IptablesDnatRule status information used by vpc gateway

8.12.5 Vpc Definition

- 307/324 - 2025 Kube-OVN Team

IPTABLESDNATRULESPEC

IPTABLESDNATRULESTATUS

VpcDns

VPCDNSSPEC

Property Name Type Description

eip Sting Name of IptablesEIP used by IptablesDnatRule

externalPort Sting External port used by IptablesDnatRule

protocol Sting Vpc gateway dnat protocol type

internalIp Sting Internal IP address used by IptablesDnatRule

internalPort Sting Internal port used by IptablesDnatRule

Property

Name

Type Description

ready Bool Whether the configuration is complete

v4ip String The v4 IP address used by IptablesDnatRule

v6ip String The v6 IP address used by IptablesDnatRule

natGwDp String Vpc gateway name

redo String IptablesDnatRule crd creation or update time

conditions []IptablesDnatRuleCondition IptablesDnatRule Status change information, refer to the beginning

of the documentation for the definition of Condition

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value VpcDns

metadata ObjectMeta Standard Kubernetes resource metadata information

spec VpcDnsSpec VpcDns specific configuration information

status VpcDnsStatus VpcDns status information

Property Name Type Description

vpc String Name of the vpc where VpcDns is located

subnet String The subnet name of the address assigned to the VpcDns pod

8.12.5 Vpc Definition

- 308/324 - 2025 Kube-OVN Team

VPCDNSSTATUS

For detailed documentation on the use of VpcDns, see Customizing VPC DNS.

SwitchLBRule

SWITCHLBRULESPEC

For detailed configuration information of SwitchLBRule, you can refer to Customizing VPC Internal Load Balancing health check.

SlrPort

Property

Name

Type Description

conditions []VpcDnsCondition VpcDns status change information, refer to the beginning of the document for

the definition of Condition

active Bool Whether VpcDns is in use

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

this value as kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will

have the value SwitchLBRule

metadata ObjectMeta Standard Kubernetes resource metadata information

spec SwitchLBRuleSpec SwitchLBRule specific configuration information

status SwitchLBRuleStatus SwitchLBRule status information

Property Name Type Description

vip String Vip address of SwitchLBRule

namespace String SwitchLBRule's namespace

selector []String Standard Kubernetes selector match information

sessionAffinity String Standard Kubernetes service sessionAffinity value

ports []SlrPort List of SwitchLBRule ports

Property Name Type Description

name String Port name

port Int32 Port number

targetPort Int32 Target port of SwitchLBRule

protocol String Protocol type

8.12.5 Vpc Definition

- 309/324 - 2025 Kube-OVN Team

SWITCHLBRULESTATUS

8.12.6 Security Group and Vip

SecurityGroup

SECURITYGROUPSPEC

SgRule

Property

Name

Type Description

conditions []SwitchLBRuleCondition SwitchLBRule status change information, refer to the beginning of the

document for the definition of Condition

ports String Port information

service String Name of the service

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will

have a value of SecurityGroup

metadata ObjectMeta Standard Kubernetes resource metadata information

spec SecurityGroupSpec Security Group specific configuration information

status SecurityGroupStatus Security group status information

Property Name Type Description

ingressRules []*SgRule Inbound security group rules

egressRules []*SgRule Outbound security group rules

allowSameGroupTraffic Bool Whether lsps in the same security group can interoperate and whether

traffic rules need to be updated

Property Name Type Description

ipVersion String IP version number, ipv4 or ipv6

protocol String The value of icmp , tcp , or udp

priority Int Acl priority. The value range is 1-200, the smaller the value, the higher the

priority.

remoteType String The value is either address or securityGroup

remoteAddress String The address of the other side

remoteSecurityGroup String The name of security group on the other side

portRangeMin Int The starting value of the port range, the minimum value is 1.

portRangeMax Int The ending value of the port range, the maximum value is 65535.

policy String The value is allow or drop

8.12.6 Security Group and Vip

- 310/324 - 2025 Kube-OVN Team

SECURITYGROUPSTATUS

Vip

VIPSPEC

Property Name Type Description

portGroup String The name of the port-group for the security group

allowSameGroupTraffic Bool Whether lsps in the same security group can interoperate, and whether

the security group traffic rules need to be updated

ingressMd5 String The MD5 value of the inbound security group rule

egressMd5 String The MD5 value of the outbound security group rule

ingressLastSyncSuccess Bool Whether the last synchronization of the inbound rule was successful

egressLastSyncSuccess Bool Whether the last synchronization of the outbound rule was successful

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value Vip

metadata ObjectMeta Standard Kubernetes resource metadata information

spec VipSpec Vip specific configuration information

status VipStatus Vip status information

Property Name Type Description

namespace String Vip's namespace

subnet String Vip's subnet

type String The type of Vip, either switch_lb_vip , or empty

v4ip String Vip IPv4 ip address

v6ip String Vip IPv6 ip address

macAddress String Vip mac address

parentV4ip String Not currently in use

parentV6ip String Not currently in use

parentMac String Not currently in use

selector []String Standard Kubernetes selector match information

attachSubnets []String This field is deprecated and no longer used

8.12.6 Security Group and Vip

- 311/324 - 2025 Kube-OVN Team

VIPSTATUS

OvnEip

OVNEIPSPEC

Property

Name

Type Description

conditions []VipCondition Vip status change information, refer to the beginning of the documentation for the

definition of Condition

ready Bool Vip is ready or not

v4ip String Vip IPv4 ip address, should be the same as the spec field

v6ip String Vip IPv6 ip address, should be the same as the spec field

mac String The vip mac address, which should be the same as the spec field

pv4ip String Not currently used

pv6ip String Not currently used

pmac String Not currently used

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value OvnEip

metadata ObjectMeta Standard Kubernetes resource metadata information

spec OvnEipSpec OvnEip specific configuration information for default vpc

status OvnEipStatus OvnEip status information for default vpc

Property Name Type Description

externalSubnet String OvnEip's subnet name

v4Ip String OvnEip IPv4 address

v6Ip String OvnEip IPv6 address

macAddress String OvnEip Mac address

type String OvnEip use type, the value can be lrp , lsp or nat

8.12.6 Security Group and Vip

- 312/324 - 2025 Kube-OVN Team

OVNEIPSTATUS

OvnFip

OVNFIPSPEC

OVNFIPSTATUS

Property

Name

Type Description

conditions []OvnEipCondition OvnEip status change information, refer to the beginning of the documentation

for the definition of Condition

type String OvnEip use type, the value can be lrp , lsp or nat

nat String dnat snat fip

v4Ip String The IPv4 ip address used by ovnEip

v6Ip String The IPv4 ip address used by ovnEip

macAddress String Mac address used by ovnEip

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources are

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will have

the value OvnFip

metadata ObjectMeta Standard Kubernetes resource metadata information

spec OvnFipSpec OvnFip specific configuration information in default vpc

status OvnFipStatus OvnFip status information in default vpc

Property Name Type Description

ovnEip String Name of the bound ovnEip

ipType String vip crd or ip crd ("" means ip crd)

ipName String The IP crd name corresponding to the bound Pod

vpc String The vpc crd name corresponding to the bound Pod

V4Ip String The IPv4 ip addresss corresponding to vip or the bound Pod

Property

Name

Type Description

ready Bool OvnFip is ready or not

v4Eip String Name of the ovnEip to which ovnFip is bound

v4Ip String The ovnEip address currently in use

vpc String The name of the vpc where ovnFip is located

conditions []OvnFipCondition OvnFip status change information, refer to the beginning of the document for

the definition of Condition

8.12.6 Security Group and Vip

- 313/324 - 2025 Kube-OVN Team

OvnSnatRule

OVNSNATRULESPEC

OVNSNATRULESTATUS

 PDF Slack Support

June 24, 2025

February 16, 2023

GitHub

Property

Name

Type Description

apiVersion String Standard Kubernetes version information field, all custom resources have

kubeovn.io/v1

kind String Standard Kubernetes resource type field, all instances of this resource will

have the value OvnSnatRule

metadata ObjectMeta Standard Kubernetes resource metadata information

spec OvnSnatRuleSpec OvnSnatRule specific configuration information in default vpc

status OvnSnatRuleStatus OvnSnatRule status information in default vpc

Property Name Type Description

ovnEip String Name of the ovnEip to which ovnSnatRule is bound

vpcSubnet String The name of the subnet of the vpc configured by ovnSnatRule

vpc String The vpc crd name corresponding to the ovnSnatRule bound Pod

ipName String The IP crd name corresponding to the ovnSnatRule bound Pod

v4IpCidr String The IPv4 cidr of the vpc subnet

Property

Name

Type Description

ready Bool OvnSnatRule is ready or not

v4Eip String The ovnEip address to which ovnSnatRule is bound

v4IpCidr String The cidr address used to configure snat in the logical-router

vpc String The name of the vpc where ovnSnatRule is located

conditions []OvnSnatRuleCondition OvnSnatRule status change information, refer to the beginning of the

document for the definition of Condition

+3

8.12.6 Security Group and Vip

- 314/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/web-flow
https://github.com/web-flow
https://github.com/morete
https://github.com/morete
https://github.com/cnvergence
https://github.com/cnvergence
https://github.com/kubeovn/docs/blob/master/docs/reference/kube-ovn-api.en.md

8.12.7 Comments

8.12.7 Comments

- 315/324 - 2025 Kube-OVN Team

8.13 Annotation Usage

Kube-OVN uses a large number of Pod and Node Annotations for configuring functionality and transferring information. Users

can refer to this document to understand the usage of each Annotation, to better troubleshooting and information retrieval.

Note: Some Annotations may change as the code is adjusted.

8.13 Annotation Usage

- 316/324 - 2025 Kube-OVN Team

8.13.1 Pod Annotation

8.13.1 Pod Annotation

- 317/324 - 2025 Kube-OVN Team

Key Value Description

ovn.kubernetes.io/allocated true or false If the Pod primary interface has already been allocated an

address

ovn.kubernetes.io/routed true or false If the Pod primary interface has already been allocated a route

ovn.kubernetes.io/

mac_address

String MAC address allocated to Pod primary interface, when creating

a Pod, you can set a fixed MAC address by this Annotation

ovn.kubernetes.io/

ip_address

String IP address allocated to Pod primary interface, when creating a

Pod, you can set a fixed IP address by this Annotation

ovn.kubernetes.io/cidr String Subnet CIDR that the Pod primary interface belongs to

ovn.kubernetes.io/gateway String Subnet Gateway address that the Pod primary interface belongs

to

ovn.kubernetes.io/ip_pool IP list, separated by

comma

Pod primary interface will choose address from this list, used

for workload fix address

ovn.kubernetes.io/bgp true , cluster , local Enable Pod address BGP advertisement

ovn.kubernetes.io/snat String SNAT address for accessing external address

ovn.kubernetes.io/eip String EIP address that Pod accesses external clusters and is accessed

from external.

ovn.kubernetes.io/vip String VIP allocated to Pod primary interface

ovn.kubernetes.io/

virtualmachine

String The VirtualMachineInstance that the Pod primary interface

belongs to

ovn.kubernetes.io/

logical_router

String The VPC that the Pod primary interface belongs to

ovn.kubernetes.io/

layer2_forward

true or false Enable add unknown address to Pod primary interface in OVN

NorthboundDB LSP

ovn.kubernetes.io/

port_security

true or false Enable Pod primary interface port security

ovn.kubernetes.io/

logical_switch

String The Subnet that the Pod primary interface belongs to

ovn.kubernetes.io/vlan_id Int The VlanID that the Pod primary interface belongs to

ovn.kubernetes.io/

ingress_rate

Int Pod primary interface ingress rate limit, measured in Mbits/s

ovn.kubernetes.io/

egress_rate

Int Pod primary interface egress rate limit, measured in Mbits/s

ovn.kubernetes.io/

security_groups

String list, separated

by comma

The SecurityGroup that the Pod primary interface belongs to

ovn.kubernetes.io/

allow_live_migration

true or false Allow live migration for Pod primary interface, used by KubeVirt

ovn.kubernetes.io/

default_route

true or false Set the default route to the Pod primary interface.

ovn.kubernetes.io/

provider_network

String The ProviderNetwork that the Pod primary interface belongs to

ovn.kubernetes.io/mirror true or false Enable Pod primary interface traffic mirror

8.13.1 Pod Annotation

- 318/324 - 2025 Kube-OVN Team

8.13.2 Node Annotation

8.13.3 Namespace Annotation

8.13.4 Subnet Annotation

8.13.5 Service Annotation

Key Value Description

ovn.kubernetes.io/latency Int The delay injected to the Pod primary interface card, measured

in milliseconds

ovn.kubernetes.io/limit Int Maximum number of packets that the qdisc queue of the

primary interface of the Pod

ovn.kubernetes.io/loss Float The probability of packet loss on the Pod primary interface

ovn.kubernetes.io/jitter Int The jitter of packet latency on the Pod primary interface,

measured in milliseconds

Key Value Description

ovn.kubernetes.io/allocated true or false If the ovn0 interface has already been allocated an address

ovn.kubernetes.io/ip_address String IP address allocated to ovn0 interface

ovn.kubernetes.io/mac_address String MAC address allocated to ovn0 interface

ovn.kubernetes.io/cidr String Subnet CIDR that the node ovn0 interface belongs to

ovn.kubernetes.io/gateway String Subnet gateway that the node ovn0 interface belongs to

ovn.kubernetes.io/chassis String The Chassis ID in OVN-SouthBoundDB that the node belongs to

ovn.kubernetes.io/port_name String The LSP name in OVN-NorthboundDB that the node ovn0 interface

belongs to

ovn.kubernetes.io/

logical_switch

String Subnet that the node ovn0 interface belongs to

ovn.kubernetes.io/

tunnel_interface

String Network interface used for tunnel encapsulation

Key Value Description

ovn.kubernetes.io/cidr CIDR list, separated by comma The CIDRs of subnets bound by this Namespace

ovn.kubernetes.io/

exclude_ips

excludeIPs list, separated by

semicolon

The excludeIPs of subnets bound by this

Namespace

Key Value Description

ovn.kubernetes.io/bgp true , cluster , local Enable Subnet address BGP advertisement

Key Value Description

ovn.kubernetes.io/bgp true or false Enable Service address BGP advertisement

ovn.kubernetes.io/switch_lb_vip String Additional VIP addresses assigned to Service in Kube-OVN.

ovn.kubernetes.io/vpc String The VPC that the Service belongs to

8.13.2 Node Annotation

- 319/324 - 2025 Kube-OVN Team

8.13.6 Networkpolicy Annotation

 PDF Slack Support

July 30, 2025

June 12, 2024

GitHub

8.13.7 Comments

Key Value Description

ovn.kubernetes.io/enable_log true or false Enable NetworkPolicy log

ovn.kubernetes.io/

log_acl_actions

One or more combinations of

"allow,drop,pass"

Print ACL logs that match ACL

action

8.13.6 Networkpolicy Annotation

- 320/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/hongzhen-ma
https://github.com/hongzhen-ma
https://github.com/web-flow
https://github.com/web-flow
https://github.com/SkalaNetworks
https://github.com/SkalaNetworks
https://github.com/oilbeater
https://github.com/oilbeater

8.14 Document Specification

In order to ensure a consistent document style, please follow the following style guidelines when submitting documents.

8.14.1 Punctuation

All punctuation in the text content in Chinese documents should use Chinese format punctuation, and all text content in English

documents should use English punctuation.

English numbers and Chinese characters should be separated by spaces.

Example content should start with : , other sentences should end with . End.

8.14.2 Code Block

yaml code blocks need to be identified as yaml.

Command-line manipulation example code blocks need to be identified as bash.

Bad Good

Here is a one-click installation script that can help you

quickly install a highly available, production-ready container

network.

Here is a one-click installation script that can help you

quickly install a highly available, production-ready container

network.

Bad Good

Kube-OVN provides a one-click installation script to install

version 1.10 of Kube-OVN.

Kube-OVN provides a one-click installation script to install

version 1.10 of Kube-OVN.

Bad Good

Please confirm that the environment configuration is

correct before installation Download the installation script

using the command below.

Please confirm that the environment configuration is correct

before installation. Download the installation script using the

following command:

wget 127.0.0.1 wget 127.0.0.1

Bad Good

````
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:
     name: attach-subnet
````

````yaml
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:
     name: attach-subnet
````

Bad Good

````
wget 127.0.0.1
````

````bash
wget 127.0.0.1
````

8.14 Document Specification

- 321/324 - 2025 Kube-OVN Team

If the command line operation example contains output content, the executed command needs to start with # to distinguish

input from output.

If the command line operation example only contains execution commands and no output results, multiple commands do not need

to start with # .

8.14.3 Link

Links in the site use the corresponding md file path.

8.14.4 Empty Line

Different logical blocks, such as title and text, text and code, text and number need to be separated by blank lines.

Bad Good

oilbeater@macdeMac-3 ~ ping 114.114.114.114 -c 3
PING 114.114.114.114 (114.114.114.114): 56 data bytes
64 bytes from 114.114.114.114: icmp_seq=0 ttl=83 time=10.429 ms
64 bytes from 114.114.114.114: icmp_seq=1 ttl=79 time=11.360 ms
64 bytes from 114.114.114.114: icmp_seq=2 ttl=76 time=10.794 ms

--- 114.114.114.114 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 10.429/10.861/11.360/0.383 ms

ping 114.114.114.114 -c 3
PING 114.114.114.114 (114.114.114.114): 56 data bytes
64 bytes from 114.114.114.114: icmp_seq=0 ttl=83 time=10.429 ms
64 bytes from 114.114.114.114: icmp_seq=1 ttl=79 time=11.360 ms
64 bytes from 114.114.114.114: icmp_seq=2 ttl=76 time=10.794 ms

--- 114.114.114.114 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 10.429/10.861/11.360/0.383 ms

Bad Good

mv /etc/origin/ovn/ovnnb_db.db /tmp
mv /etc/origin/ovn/ovnsb_db.db /tmp

mv /etc/origin/ovn/ovnnb_db.db /tmp
mv /etc/origin/ovn/ovnsb_db.db /tmp

Bad Good

Please refer to [Preparation](http://kubeovn.github.io/prepare) before
installation.

Please refer to [Preparation](./prepare.md) before
installation.

Bad Good

If you have any questions, please refer to [Kubernetes
Documentation](http://kubernetes.io).

If you have any questions, please refer to [Kubernetes Documentation](http://
kubernetes.io){: target="_blank" }.

Bad Good

Download the script below to install it:
```bash
wget 127.0.0.1
```

Download the script below to install it:

```bash
wget 127.0.0.1
```

8.14.3 Link

- 322/324 - 2025 Kube-OVN Team

Separate logical blocks with only one blank line.

 PDF Slack Support

August 23, 2023

July 19, 2022

GitHub

8.14.5 Comments

Bad Good

Download the script below to install it:

```bash
wget 127.0.0.1
```

Download the script below to install it:

```bash
wget 127.0.0.1
```

8.14.5 Comments

- 323/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater
https://github.com/loan75
https://github.com/loan75

9. Contact US

 PDF Slack Support

June 30, 2022

June 30, 2022

GitHub

9.1 Comments

9. Contact US

- 324/324 - 2025 Kube-OVN Team

/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
/docs/v1.14.x/en/pdf/document.pdf
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://communityinviter.com/apps/kube-ovn/kube-ovn/
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://www.alauda.io/products/kube-ovn
https://github.com/oilbeater
https://github.com/oilbeater

	Kube-OVN Document
	1. Kube-OVN
	1.1 What is Kube-OVN?
	1.2 Why Kube-OVN?
	1.3 CNI Selection Recommendations
	1.3.1 When You Need an eBPF Solution
	1.3.2 When You Need an All-in-One Solution (CNI, Ingress, Service Mesh, and Observability)
	1.3.3 When Running on OpenShift
	1.3.4 When Using Public Cloud Kubernetes (EKS/AKS/GKE, etc.)
	1.3.5 When Running AI Training and Inference Workloads

	1.4 Concepts Clarification: OVN/ovn-kubernetes/Kube-OVN
	1.4.1 OVN
	1.4.2 ovn-kubernetes
	1.4.3 Kube-OVN

	1.5 Comments

	2. Getting Started
	2.1 Prerequisites
	2.1.1 Software Version
	2.1.2 Environment Setup
	2.1.3 Ports Need Open
	2.1.4 Comments

	2.2 One-Click Installation
	2.2.1 Script Installation
	Download the installation script
	Modify Configuration Options
	Run the Script
	Upgrade

	2.2.2 Helm Chart Installation
	View the node IP address
	Add label to node
	Add Helm Repo information
	Install Kube-OVN with Helm
	Upgrade

	2.2.3 Comments

	2.3 Underlay Installation
	2.3.1 Limitation
	2.3.2 Comparison with Macvlan
	2.3.3 Environment Requirements
	2.3.4 Specify Network Mode When Deploying
	Download Script
	Modify Configuration Options

	Run the Script

	2.3.5 Dynamically Create Underlay Networks via CRD
	Create ProviderNetwork
	Create VLAN
	Create Subnet

	2.3.6 Create Pod
	2.3.7 Logical Gateway
	2.3.8 Interconnection of Underlay and Overlay Networks
	Specify logical gateway IP
	Specify custom VPC for Underlay Subnet connection

	2.3.9 Notice
	2.3.10 Known Issues
	When the physical network is enabled with hairpin, Pod network is abnormal
	When there are a large number of Pods, gateway check for new Pods fails

	2.3.11 Comments

	2.4 Install on Talos
	2.4.1 Deploy Kube-OVN via Helm Chart
	2.4.2 Comments

	2.5 Uninstall
	2.5.1 Delete Resource in Kubernetes
	2.5.2 Cleanup Config and Logs on Every Node
	2.5.3 Reboot Node
	2.5.4 Comments

	3. User Guide
	3.1 Installation and Configuration Options
	3.1.1 Built-in Network Settings
	3.1.2 Config Service CIDR
	3.1.3 Overlay NIC Selection
	3.1.4 Config MTU
	3.1.5 Global Traffic Mirroring Setting
	3.1.6 LB Settings
	3.1.7 NetworkPolicy Settings
	3.1.8 EIP and SNAT Settings
	3.1.9 Centralized Gateway ECMP Settings
	3.1.10 Kubevirt VM Fixed Address Settings
	3.1.11 CNI Settings
	3.1.12 Tunnel Type Settings
	3.1.13 SSL Settings
	3.1.14 Comments

	3.2 Config Subnet
	3.2.1 Default Subnet
	Check the Default Subnet

	3.2.2 Join Subnet
	Check the Join Subnet

	3.2.3 Create Custom Subnets
	Create Subnet
	Create Pod in the Subnet
	Workload Subnet Binding

	3.2.4 Overlay Subnet Gateway Settings
	Distributed Gateway
	Centralized Gateway

	3.2.5 Subnet ACL
	3.2.6 Subnet Isolation
	Enable Subnet Isolation Examples

	3.2.7 Underlay Settings
	3.2.8 Gateway Check Settings
	3.2.9 Multicast-Snoop Setting
	3.2.10 Subnet MTU Setting
	3.2.11 Other Advanced Settings
	3.2.12 Comments

	3.3 DualStack
	3.3.1 Create dual-stack Subnet
	3.3.2 Check Pod Address
	3.3.3 Comments

	3.4 Fixed Addresses
	3.4.1 Single Pod Fixed IP/Mac
	3.4.2 Workload IP Pool
	Deployment With Fixed IPs

	3.4.3 StatefulSet Fixed Address
	StatefulSet Example
	Updating StatefulSet Pod IPs

	3.4.4 KubeVirt VM Fixed Address
	3.4.5 Comments

	3.5 Reserved IP for Specific Resources
	3.5.1 1. Create Reserved IP
	1.1 Auto Allocate Address for Reserved IP
	1.2 Specifies the reserved IP address
	Pod use reserved IP

	3.5.2 2. Delete
	3.5.3 Comments

	3.6 Configure IPPool
	3.6.1 Instructions
	3.6.2 Precautions
	3.6.3 Comments

	3.7 Custom Routes
	3.7.1 Comments

	3.8 EIP and SNAT
	3.8.1 Preparation
	3.8.2 Create Config
	3.8.3 Confirm the Configuration Take Effect
	3.8.4 Config EIP amd SNAT on Pod
	3.8.5 Advanced Configuration
	3.8.6 Comments

	3.9 Manage QoS
	3.9.1 Maximum Bandwidth Limit QoS
	Test QoS

	3.9.2 linux-netem QoS
	3.9.3 Comments

	3.10 Webhook
	3.10.1 Install Cert-Manager
	3.10.2 Install Webhook
	3.10.3 Verify Webhook Take Effect
	3.10.4 Comments

	3.11 Traffic Mirror
	3.11.1 Global Traffic Mirroring Settings
	3.11.2 Pod Level Mirroring Settings
	3.11.3 Performance Test
	1. Pod to Pod in the same Nodes
	Enable traffic mirroring
	Disable traffic mirroring

	2. Pod to Pod in the different Nodes
	Enable traffic mirroring
	Disable traffic mirroring

	3. Node to Node
	Enable traffic mirroring
	Disable traffic mirroring

	4. Pod to the Node where the Pod is located
	Enable traffic mirroring
	Disable traffic mirroring

	5. Pod to the Node where the Pod is not located
	Enable traffic mirroring
	Disable traffic mirroring

	6. Pod to the cluster ip service
	Enable traffic mirroring
	Disable traffic mirroring

	7. Host to the Node port service where the Pod is not located on the target Node
	Enable traffic mirroring
	Disable traffic mirroring

	8. Host to the Node port service where the Pod is located on the target Node
	Enable traffic mirroring
	Disable traffic mirroring

	3.11.4 Comments

	3.12 NetworkPolicy Logging
	3.12.1 Enable NetworkPolicy Logging
	3.12.2 Other NetworkPolicy Logging
	3.12.3 Disable NetworkPolicy Logging
	3.12.4 AdminNetworkPolicy and BaselineAdminNetworkPolicy Logging
	3.12.5 Comments

	3.13 LoadBalancer Type Service
	3.13.1 Steps to Configure Default VPC LoadBalancer Service
	Enable Feature Flag
	Create NetworkAttachmentDefinition CRD Resource
	Create Subnet
	Create LoadBalancer Service

	3.13.2 Testing LoadBalancerIP access
	Configure the nodeSelector for the LB Service Pod

	3.13.3 Comments

	3.14 Monitor and Dashboard
	3.14.1 Install Prometheus Monitor
	3.14.2 Import Grafana Dashboard
	3.14.3 Comments

	3.15 Config Native Prometheus
	3.15.1 Config Prometheus
	Permission Configuration
	Prometheus ConfigMap
	Deploy Prometheus

	3.15.2 Prometheus Metrics Config
	Configure to Query Specified Resource

	3.15.3 Comments

	4. KubeVirt
	4.1 Fixed VM IP
	4.1.1 Binding IP and VM Lifecycle
	4.1.2 Specifying IP Address
	4.1.3 Comments

	4.2 Dual-Stack Network
	4.2.1 Usage
	4.2.2 Comments

	4.3 Live Migration
	4.3.1 Usage
	4.3.2 Live Migration Principles
	4.3.3 Comments

	4.4 DHCP
	4.4.1 Comments

	5. VPC Network
	5.1 Config VPC
	5.1.1 Implementation Principle
	5.1.2 Creating Custom VPCs
	Custom VPC Pod supports livenessProbe and readinessProbe

	5.1.3 Create VPC NAT Gateway
	Configuring the External Network
	Enabling the VPC Gateway
	Create VPC Gateway
	Create EIP
	Create DNAT Rules
	Create SNAT Rules
	Create Floating IP

	5.1.4 Custom Routing
	Static Routes
	Policy Routes

	5.1.5 Custom vpc-dns
	Create an Additional Network
	Modify the Provider of the ovn-default Logical Switch
	Modify the vpc-dns ConfigMap
	Deploying VPC-DNS Dependent Resources
	Deploy vpc-dns
	Restrictions

	5.1.6 Default subnet selection for custom VPC
	5.1.7 Comments

	5.2 VPC Egress Gateway
	5.2.1 Implementation Details
	5.2.2 Requirements
	5.2.3 Usage
	Creating a Network Attachment Definition
	Creating a VPC Egress Gateway
	Enabling BFD-based High Availability
	Configuration Parameters
	VPC BFD Port
	VPC Egress Gateway

	5.2.4 Comments

	5.3 VPC QoS
	5.3.1 EIP QoS
	5.3.2 View EIPs with QoS enabled
	5.3.3 QoS for VPC NATGW net1 NIC
	5.3.4 QoS for specific traffic on net1 NIC
	5.3.5 View NATGWs with QoS enabled
	5.3.6 View QoS rules
	5.3.7 Limitations
	5.3.8 Comments

	5.4 Customize VPC Internal Load Balancing
	5.4.1 Automatically Generate Load Balancing Rules by Selector
	5.4.2 Manually Defined Load Balancing Rules by Endpoints
	5.4.3 Health Check
	Create SwitchLBRule
	Update load balance service endpoints

	5.4.4 Comments

	5.5 Custom VPC Internal DNS
	5.5.1 Deployment of vpc-dns dependent resources
	5.5.2 Configuring Additional Network
	5.5.3 Configuring Configmap for vpc-dns
	5.5.4 Deploying vpc-dns
	5.5.5 Validate deployment results
	5.5.6 Comments

	5.6 SecurityGroup Usage
	5.6.1 SecurityGroup Example
	5.6.2 Caution
	5.6.3 Actual test
	5.6.4 Comments

	5.7 Support OVN EIP,FIP and SNAT
	5.7.1 Two independent ways of use
	5.7.2 1. Deployment
	1.1 Create the underlay public network
	1.2 Default VPC enable eip_snat
	1.3 Custom VPC enable eip snat fip function
	1.4 Use additional public network
	1.4.1 Create additional underlay public network
	1.4.2 Custom VPC configuration

	5.7.3 2. ovn-eip
	2.1 Create an fip for pod
	2.2 Create an fip for vip

	5.7.4 3. ovn-snat
	3.1 ovn-snat corresponds to the CIDR of a subnet
	3.2 ovn-snat corresponds to a pod IP

	5.7.5 4. ovn-dnat
	4.1 ovn-dnat binds a DNAT to a pod
	4.2 ovn-dnat binds a DNAT to a VIP

	5.7.6 Comments

	5.8 Support OVN SNAT L3 HA Based ECMP and BFD Static Route
	5.8.1 1. Deployment
	1.1 Create the underlay public network
	1.2 Default vpc enable eip_snat
	1.3 Custom vpc enable eip snat fip function

	5.8.2 2. Custom vpc enable ecmp bfd L3 HA public network function
	5.8.3 3. Turn off bfd mode
	5.8.4 Comments

	5.9 VPC Peering
	5.9.1 Prerequisites
	5.9.2 Usage
	5.9.3 Comments

	6. Operations
	6.1 Kubectl Plugin
	6.1.1 Plugin Installation
	6.1.2 Plugin Usage
	[nb | sb] [status | kick | backup | dbstatus | restore]
	DB Cluster Status Check
	DB Nodes Offline
	DB Backup
	Database Storage Status Check
	Database Repair

	[nbctl | sbctl] [options ...]
	vsctl {nodeName} [options ...]
	ofctl {nodeName} [options ...]
	dpctl {nodeName} [options ...]
	appctl {nodeName} [options ...]
	tcpdump {namespace/podname} [tcpdump options ...]
	trace [arguments ...]
	diagnose {all|node|subnet|IPPorts} [nodename|subnetName|{proto1}-{IP1}-{Port1},{proto2}-{IP2}-{Port2}]
	tuning {install-fastpath|local-install-fastpath|remove-fastpath|install-stt|local-install-stt|remove-stt} {centos7|centos8}} [kernel-devel-version]
	reload
	log
	perf [image]

	6.1.3 Comments

	6.2 Delete Work Node
	6.2.1 Evict Pods on the Node
	6.2.2 Stop kubelet and docker
	6.2.3 Cleanup Files on Node
	6.2.4 Delete the Node
	6.2.5 Check If Node Removed from OVN-SB
	6.2.6 Delete the Chassis Manually
	6.2.7 Comments

	6.3 Replace ovn-central Node
	6.3.1 ovn-central Nodes Offline
	Kick Node in ovn-nb
	Kick Node in ovn-sb
	Delete Node Label and Downscale ovn-central
	Modify Components Address to ovn-central
	Clean Node

	6.3.2 ovn-central Online
	Directory Check
	Check Current ovn-central Status
	Label Node and Scale ovn-central
	Modify Components Address to ovn-central

	6.3.3 Comments

	6.4 OVN DB Backup and Recovery
	6.4.1 Database Backup
	6.4.2 Cluster Partial Nodes Failure Recovery
	Check the Logs to Confirm Status
	Kick Node from Cluster

	6.4.3 Recover when Total Cluster Failed
	Stop ovn-central
	Select a Backup
	Delete the Database Files on All ovn-central Nodes
	Recovering Database Cluster

	6.4.4 Comments

	6.5 Change Subnet CIDR
	6.5.1 Edit Subnet
	6.5.2 Rebuild all Pods under this Subnet
	6.5.3 Change Default Subnet Settings
	6.5.4 Comments

	6.6 Change Join Subnet CIDR
	6.6.1 Delete Join Subnet
	6.6.2 Cleanup Allocated Config
	6.6.3 Modify Join Subnet
	6.6.4 Reconfigure ovn0 NIC Address
	6.6.5 Comments

	6.7 Change Log Level
	6.7.1 Comments

	6.8 FAQ
	6.8.1 Kylin ARM system cross-host container access intermittently fails
	Behavior
	Solution

	6.8.2 Pod can not Access Service
	Behavior
	Solution

	6.8.3 Frequent leader selection occurs in ovn-central
	Behavior
	Solution

	6.8.4 Comments

	7. Advanced Features
	7.1 Manage Multiple Interface
	7.1.1 Working Principle
	Workflow

	7.1.2 Usage
	Install Kube-OVN and Multus
	Provide IPAM for other types of CNI
	Create NetworkAttachmentDefinition
	Create a Kube-OVN Subnet
	Create a Pod with Multiple NIC
	Create Pod with a Fixed IP
	Create Workloads with Fixed IPs
	Create a Pod using macvlan as default route
	Create a Pod using macvlan as the main nic

	Create a Kube-OVN Subnet (Provider ovn)
	Create a Pod with Multiple NIC

	The attached NIC is a Kube-OVN type NIC
	Create NetworkAttachmentDefinition
	Create a Kube-OVN Subnet
	Create a Pod with Multiple NIC

	Create a Kube-OVN Subnet (Provider ovn)
	Create a Pod with Multiple NIC

	7.1.3 Comments

	7.2 Performance Tuning
	7.2.1 Benchmarking
	Overlay Performance Comparison before and after Optimization
	Overlay and Underlay Comparison

	7.2.2 Dataplane performance optimization methods
	CPU Performance Mode Tuning
	NIC Hardware Queue Adjustment
	Optimize with tuned
	Interrupt Binding
	Disable OVN LB
	FastPath Kernel Module
	OVS Kernel Module Optimization
	Compile and Install in CentOS
	Compile and Install in Ubuntu

	Using STT Type Tunnel

	7.2.3 Comments

	7.3 Compile FastPath Module
	7.3.1 Download Related Code
	7.3.2 Install Dependencies
	7.3.3 Compile the Module
	7.3.4 Instal the Kernel Module
	7.3.5 Comments

	7.4 Accelerate TCP Communication in Node with eBPF
	7.4.1 Basic Principle
	7.4.2 Prerequisites
	7.4.3 Experimental Steps
	7.4.4 Test Results
	7.4.5 References
	7.4.6 Comments

	7.5 Cluster Inter-Connection with OVN-IC
	7.5.1 Prerequisites
	7.5.2 Deploy a single-node OVN-IC DB
	Single node deployment solution 1
	Single node deployment solution 2

	7.5.3 Automatic Routing Mode
	7.5.4 Manual Routing Mode
	7.5.5 Highly Available OVN-IC DB Installation
	High availability deployment solution 1
	High availability deployment solution 2

	7.5.6 Support cluster interconnection ECMP
	7.5.7 Manual Reset
	7.5.8 Clean OVN-IC
	7.5.9 Comments

	7.6 Cluster Inter-Connection with Submariner
	7.6.1 Prerequisites
	7.6.2 Install Submariner
	7.6.3 Comments

	7.7 Interconnection with Routes in Overlay Mode
	7.7.1 Prerequisites
	7.7.2 Steps
	7.7.3 Comments

	7.8 BGP Support
	7.8.1 Installing kube-ovn-speaker
	7.8.2 Publishing Pod/Subnet Routes
	7.8.3 Publishing Services of type ClusterIP
	7.8.4 Publishing EIPs
	7.8.5 Announcement policies
	7.8.6 BGP Advanced Options
	7.8.7 BGP routes debug
	7.8.8 Comments

	7.9 Integrating MetalLB with Kube-OVN Underlay
	7.9.1 Feature Introduction
	7.9.2 Working Principle
	7.9.3 Prerequisites
	7.9.4 Deployment Steps
	1. Deploy Kube-OVN
	2. Configure Underlay Subnet
	3. Deploy MetalLB
	4. Create LoadBalancer Service

	7.9.5 Testing and Verification
	7.9.6 Notes
	7.9.7 Comments

	7.10 Integration with Cilium
	7.10.1 Prerequisites
	7.10.2 Configure Kube-OVN
	7.10.3 Deploy Cilium
	7.10.4 Using Kube-OVN's NAT gateways with Cilium
	7.10.5 Comments

	7.11 Cilium NetworkPolicy Support
	7.11.1 Verification Steps
	Create test Pod
	L3 Network Policy Test
	L4 Network Policy Test
	L7 Network Policy Test

	7.11.2 Comments

	7.12 Cilium Network Traffic Observation
	7.12.1 Install Hubble
	7.12.2 Deploy and test
	7.12.3 Use the command line to observe traffic
	Configure port forwarding
	Use the command line to observe traffic

	7.12.4 Use UI to observe traffic
	7.12.5 Hubble Traffic Monitoring
	7.12.6 Comments

	7.13 External Gateway
	7.13.1 Usage
	7.13.2 Comments

	7.14 VIP reserved IP
	7.14.1 1. Allowed-Address-Pairs VIP
	1.1 Automatically assign addresses to VIP
	1.2 Use fixed address VIP
	1.3 Pod Uses VIP to enable AAP
	1.3.1 Create VIP support AAP

	7.14.2 2. Switch LB rule vip
	7.14.3 3. POD Use VIP to reserve IP address
	3.1 StatefulSet and Kubevirt VM retain VIP

	7.14.4 Comments

	7.15 Offload with Mellanox
	7.15.1 Prerequisites
	7.15.2 Configure SR-IOV and Device Plugin
	Manually configure SR-IOV and Device Plugin
	Configure SR-IOV
	Configure Device Plugin

	Configure SR-IOV and Device Plugin using sriov-network-operator

	7.15.3 Install Multus-CNI
	7.15.4 Overlay offload
	Enable Offload in Kube-OVN
	Create Pods with VF NICs

	7.15.5 Underlay offload
	Enable Offload in Kube-OVN
	Create Pods with VF NICs

	7.15.6 offload verification
	7.15.7 Comments

	7.16 Offload with Corigine
	7.16.1 Prerequisites
	7.16.2 Setup SR-IOV
	7.16.3 Install SR-IOV Device Plugin
	7.16.4 Install Multus-CNI
	7.16.5 Enable Offload in Kube-OVN
	7.16.6 Create Pods with VF NICs
	7.16.7 Comments

	7.17 Hardware Offload for Yunsilicon
	7.17.1 Prerequisites
	7.17.2 Installation Guide
	Install Kube-OVN with hw-offload mode enabled
	Setting Up SR-IOV
	Install SR-IOV Device Plugin
	Install Multus-CNI
	Create Pod with SR-IOV
	Verify If Offload Works

	7.17.3 Comments

	7.18 Offload with YUSUR
	7.18.1 Prerequisites
	7.18.2 Installation Guide
	Setting Up SR-IOV
	Configure and install SR-IOV Device Plugin

	7.18.3 Install Multus-CNI
	7.18.4 Enable Offload in Kube-OVN
	Create Pods with VF NICsCreate Pods with VF NICs
	Offload verification

	7.18.5 Comments

	7.19 DPDK Support
	7.19.1 Prerequisites
	7.19.2 Set DPDK driver
	7.19.3 Configure Nodes
	7.19.4 Install Kube-OVN
	7.19.5 Usage
	7.19.6 Comments

	7.20 Integration with OpenStack
	7.20.1 Cluster Interconnection
	Prerequisites
	Deploy OVN-IC DB
	Kubernetes Side Operations
	OpenStack Side Operations

	7.20.2 Shared Underlay OVN
	Neutron Modification
	Using OpenStack Internal Resources in Kubernetes

	7.20.3 Comments

	7.21 Use IPsec to encrypt communication between nodes
	7.21.1 Encryption process
	7.21.2 Configure IPsec
	7.21.3 Comments

	7.22 OVN Remote Port Mirroring
	7.22.1 Install Multus-CNI
	7.22.2 Create NetworkAttachmentDefinition
	7.22.3 Create Underlay Network
	7.22.4 Create Receiving Pod
	7.22.5 Create OVN Remote Port Mirroring
	7.22.6 Configure Receiving Pod
	7.22.7 Notice
	7.22.8 Comments

	7.23 NodeLocal DNSCache and Kube-OVN adaptation
	7.23.1 Nodelocal DNSCache deployment
	Deploy Kubernetes NodeLocal DNScache
	Kube-OVN corresponding DNS configuration
	Underlay subnet enable U2O switch
	Specify the corresponding local DNS IP for kube-ovn-controller
	Rebuild the created Pods

	7.23.2 Validator local DNS cache function
	7.23.3 Note
	NetworkPolicy Example

	7.23.4 Comments

	7.24 Default VPC NAT Policy Rule
	7.24.1 Purpose
	7.24.2 How to use NAT Policy Rules
	7.24.3 Comments

	8. Reference
	8.1 Architecture
	8.1.1 Component Introduction
	Upstream OVN/OVS Components
	ovn-central
	ovs-ovn

	Core Controller and Agent
	kube-ovn-controller
	kube-ovn-cni

	Monitoring, Operation and Maintenance Tools and Extension Components
	kube-ovn-speaker
	kube-ovn-pinger
	kube-ovn-monitor
	kubectl-ko

	8.1.2 Comments

	8.2 Kube-OVN RoadMap
	8.2.1 Network Datapath
	8.2.2 VPC Network
	8.2.3 User Experience
	8.2.4 Comments

	8.3 Release Management
	8.3.1 Maintenance Strategy
	8.3.2 Release Cycle
	8.3.3 Patch Version Release Method
	8.3.4 Minor Version Release Method
	8.3.5 Comments

	8.4 Feature Stage
	8.4.1 Definition of Stage
	8.4.2 Feature Stage List
	8.4.3 Comments

	8.5 Underlay Traffic Topology
	8.5.1 Pods in Same Node and Same Subnet
	8.5.2 Pods in Different Nodes and Same Subnet
	8.5.3 Pods in Same Node and Different Subnets
	8.5.4 Pods in Different Nodes and Different Subnets
	8.5.5 Access to External
	8.5.6 Overview without Vlan Tag
	8.5.7 Overview with Vlan Tag
	8.5.8 Pod visit Service IP
	Service Backend is the Same Node and Same Subnet Pod
	Service Backend is the Same Node and Different Subnets Pod

	8.5.9 Comments

	8.6 Iptables Rules
	8.6.1 Comments

	8.7 Kube-OVN-Pinger args Reference
	8.7.1 Args Describeption
	8.7.2 Comments

	8.8 Development and Contribution Guide
	8.8.1 Contribution Process
	8.8.2 Environmental Preparation
	8.8.3 Build Image
	8.8.4 Building the Base Image
	8.8.5 Run E2E
	8.8.6 Comments

	8.9 OVS/OVN Customization
	8.9.1 Comments

	8.10 Tunnel Protocol Selection
	8.10.1 Geneve
	8.10.2 Vxlan
	8.10.3 STT
	8.10.4 References
	8.10.5 Comments

	8.11 Metrics
	8.11.1 ovn-monitor
	8.11.2 ovs-monitor
	8.11.3 kube-ovn-pinger
	8.11.4 kube-ovn-controller
	8.11.5 kube-ovn-cni
	8.11.6 Comments

	8.12 Kube-OVN API Reference
	8.12.1 Generic Condition Definition
	8.12.2 Subnet Definition
	Subnet
	SubnetSpec
	Acl

	SubnetStatus

	8.12.3 IP Definition
	IP
	IPSepc

	8.12.4 Underlay configuration
	Vlan
	VlanSpec
	VlanStatus

	ProviderNetwork
	ProviderNetworkSpec
	CustomInterface

	ProviderNetworkStatus

	8.12.5 Vpc Definition
	Vpc
	VpcSpec
	StaticRoute
	PolicyRoute
	VpcPeering

	VpcStatus

	VpcNatGateway
	VpcNatSpec
	VpcNatToleration

	IptablesEIP
	IptablesEipSpec
	IptablesEipStatus

	IptablesFIPRule
	IptablesFIPRuleSpec
	IptablesFIPRuleStatus

	IptablesSnatRule
	IptablesSnatRuleSpec
	IptablesSnatRuleStatus

	IptablesDnatRule
	IptablesDnatRuleSpec
	IptablesDnatRuleStatus

	VpcDns
	VpcDnsSpec
	VpcDnsStatus

	SwitchLBRule
	SwitchLBRuleSpec
	SlrPort

	SwitchLBRuleStatus

	8.12.6 Security Group and Vip
	SecurityGroup
	SecurityGroupSpec
	SgRule

	SecurityGroupStatus

	Vip
	VipSpec
	VipStatus

	OvnEip
	OvnEipSpec
	OvnEipStatus

	OvnFip
	OvnFipSpec
	OvnFipStatus

	OvnSnatRule
	OvnSnatRuleSpec
	OvnSnatRuleStatus

	8.12.7 Comments

	8.13 Annotation Usage
	8.13.1 Pod Annotation
	8.13.2 Node Annotation
	8.13.3 Namespace Annotation
	8.13.4 Subnet Annotation
	8.13.5 Service Annotation
	8.13.6 Networkpolicy Annotation
	8.13.7 Comments

	8.14 Document Specification
	8.14.1 Punctuation
	8.14.2 Code Block
	8.14.3 Link
	8.14.4 Empty Line
	8.14.5 Comments

	9. Contact US
	9.1 Comments

